
AddChar

Format
AddChar(String1, String2)

Purpose
Appends string2 to the end of string1, but only if string1 doesn't already end with string2.

Parameters
• String to append to
• String to be appended (can be one or more characters)

Return Value
None

Example
Set %String1% = "C:\TEMP"
AddChar(%String1%, "\") // Results in C:\TEMP\
AddChar(%String1%, "\") // Results in C:\TEMP\ - doesn't add it the second time

AddDeInstall

Format
AddDeInstall("section" , "text string")

Purpose
Adds a script line to the de-install script file.

Parameters
• String section to add the script line to. Valid sections are:

$STARTUP$
$PREDEINSTALL$
$UNPROTECT$
$FILES$
$PMGROUP$
$USERSCRIPT$
$DIRECTORIES$
$CLEANUP$

• Script line to add which should be any valid script command.

Return Value
None

Comments
Please see the help section on OpenDeInstall for a full description of how the de-install script file operates.

See Also
OpenDeInstall, CloseDeInstall

AddListItem

Format
AddListItemr("ObjectName", nControlId, "Items")

Purpose
Adds list items to a listbox, combobox or droplist control..

Parameters
• String name of object containing the control
• Numeric Id of the control to be changed within the object
• String containing item to add to the list

Return Value
None

Example
AddListItem("MYDIALOG", 50, "Item1|Item2")

Notes
Since the length of text strings is limited by the interpreter, this function provides a means of adding extra
items to a list control beyond the length of text normally allowed.
The text may contain | characters or carriage return characters. These are used as delimiters between list items
so that you can use this function to add multiple items at a time.
The function automatically appends a | character to the end of the existing list if it does not end in one before
adding the new text.
The SetControlText function can be used to completely clear all items in the list control.

AppendProfileString

Format
AppendProfileString("section" , "entry",

"setting", "file name")

Purpose
Appends a string to a Windows .INI file entry.

Parameters
• String [Section] of .INI file to write to
• String entry within the section to write
• String data to be appended to the entry
• String name of .INI file to write to

Return Value
None

Comments
The AppendProfileString function is used to write extra values on to the end of existing .INI file entries. A
typical example .INI entry may be:

[Install]
Path=C:\;

Often, it is necessary to append extra values to the .INI entry, in the example above, more path names to create
an entry:

[Install]
Path=C:\;C:\BATCH;

The AppendProfileString function can be used to do this. AppendProfileString is exactly the same as
WriteProfileString except that it never overwrites existing entries: it always adds the new entries to the end of
the existing entries.
Before adding a string, AppendProfileString always checks to see if the new value already exists in the .INI
file entry and if so, does not add it again.
AppendProfileString is not case sensitive with the values in the .INI file entry, but each entry must be
separated with a semi colon ';' character. AppendProfileString will automatically append these where
necessary.
AppendProfileString cannot be used to remove an individual item of data from within a .INI file entry, but if
either of the Section or Entry parameters is an empty string, AppendProfileString acts in exactly the same way
as WriteProfileString and deletes the entire Section or Entry.
AppendProfileString can be used to create .INI file entries. They will automatically be terminated with a semi
colon ';' character.

See Also
WriteProfileString, GetProfileString

AppendFile

Format
AppendFile("string", "filename.ext")

Purpose
Appends a string to the end of an ASCII file only if none of the lines already in the file match

Parameters
• String to add the the file
• String name of file to add the string to

Return Value
None

Comments
AppendFile sequencially searches through an ASCII file to see if any of the lines within it contain the text
supplied as a parameter. If one does, the file is not changed. If not found, a new line is appended to the end of
the file containing the new text.
This function is used by Setup Builder installs to update the de-install script file (projname.SCR) with script
commands to de-install files. Since Setup Builder allows optional installations, and those installations can
install different files, the de-install script file must be updated to record commands to de-install files.

CALL command

Format
CALL "filename"

Purpose
Calls another script file as a subroutine script

Parameters
• String name of the script file to call

Return Value
None

Comments
The script interpreter supports nested calling of scripts to 6 levels.
The default file extension for script files if an extension is not supplied is .INF
Calling another script file using this command enables 'sub-routine' scripts to be used.
When a 'sub-routine' script is called, all of the commands within it are executed until the end of the script is
reached, after which, control returns to the line after the CALL command in the calling script.
If a premature termination of the 'sub-routine' script is required, the EXIT command may be used to force
control back to the calling script

See Also
EXIT

CentreDialog

Format
CentreDialog()
CentreDialog(x, y)

Purpose
Centres a Dialog on the screen when the dialog is first displayed.

Parameters
• Numeric flags for horizontal position:

 -1 Restore normal positioning
 0 No centering - use dialog's coordinates
 1 Position to the left of the screen
 2 Position to the right of the screen
 3 Position centrally on the screen

• Numeric flags for vertical position:
 -1 Restore normal positioning
 0 No centering - use dialog's coordinates
 1 Position to the top of the screen
 2 Position to the bottom of the screen
 3 Position centrally on the screen

Return Value
None

Comments
The CentreDialog function is used by both User Defined Dialogs and the in-built dialogs and causes them to be
positioned centrally on screen, both vertically and horizontally, when the dialog is first displayed.
With in-built dialogs, the function affects how all future in-built dialogs will be positioned.
Centering of in-built dialogs can be switched off by using:

CentreDialog(-1, -1)
The default setting for the CentreDialog() is centering on screen: CentreDialog(3, 3)

Example
Please see the example in the CreateDialog function documentation.

Chdir

Format
Chdir("Directory")

Purpose
Changes the current drive and/or directory

Parameters
• String name of directory to change to

Return Value
The %ERROR% variable holds the error status:

• TRUE Error - directory not found
• FALSE Success

Comments
Unlike the DOS equivalent, this command changes both the drive and directory if they are specified

Example
CHDIR("C:\SETUP")

See Also
Mkdir, Rmdir

CheckExists

Format
CheckExists("filename")
CheckExists("filename", "message")

Purpose
Checks for the presence of the file 'filename'.
In its second form this function checks for the existence of the parameter file and displays a message box if the
file is not found. The message box continues to be displayed until a disk is inserted which contains the
specified file

Parameters
• String name of file to check for
• Optional message to display if the file is not found

Return Value
The %ERROR% variable contains the return value:
Method 1:
• TRUE File(s) exist(s)
• FALSE File(s) do/does not exist

Method 2:
• IDOK File(s) exist(s)
• IDCANCEL File(s) not found and user has pressed Cancel

Comments
The file name may contain wildcards, drive and directory specifications.
This function can be used to check whether the correct disk in an installation suite has been inserted in the
diskette drive

Example
CHECKEXISTS("C:\AUTOEXEC.BAT")
CHECKEXISTS("A:\DISK01", "Please insert DISK #1")

See Also
CheckLabel, GetModuleInUse

CheckLabel

Format
CheckLabel("drive", "label", "message")

Purpose
Checks the disk 'drive' to see if it has the label 'label' and if not, displays a message box containing the
parameter message

Parameters
• String drive letter
• String label of diskette to compare against
• String message to display if the diskette label does not

match the specified label

Return Value
Sets the %ERROR% variable according to which key the user pressed to terminate the message box:

• IDOK User pressed the Ok button or the disk
had the correct label

• IDCANCEL User pressed the Cancel button to quit

Example
CHECKLABEL("A:", "DISK1", "Insert disk labelled DISK1")

ChangeConfig

Format
ChangeConfig("filename.ext", nFiles, nBuffers, %BackupName%, %Changes%, bCreateAnyWay)

Purpose
Modifies the FILES= and/or optionally, the BUFFERS= entries in the CONFIG.SYS file specified.

Parameters
• File name to modify
• Number of FILES= to set. A value of zero means don't change it
• Number of BUFFERS= to set. A value of zero means don't change it
• The variable to hold the backup file name on exit
• The variable to hold the number of changes made on exit
• Create the file if it does not exist

Return Value
The %ERROR% variable holds the error status:

• TRUE Error - unable to create/modify file
• FALSE Success

Comments
ChangeConfig is used to modify the CONFIG.SYS file on a machine. It can only be used to change the FILES
value and the BUFFERS value. By supplying values of zero, it is possible to change one entry without the
other. ChangeConfig NEVER decreases the values in the CONFIG.SYS: it will only ever increase them to the
specified value. If the existing value is higher than the specified value, then the existing value will be retained.
ChangeConfig can handle the later versions of DOS CONFIG.SYS which enable menu choices and different
startup configurations. The function will traverse the entire CONFIG.SYS file, making changes to all
FILES/BUFFERS sections where necessary.
Before making any changes, ChangeConfig makes a backup copy of the existing CONFIG.SYS file. The
backup file always has a name: CONFIG.nnn where nnn is a number of a file which doesn't already exist.
Therefore, re-running the function will create more and more backup files up to a maximum of 999. Upon exit
from the function, the name of the backup file created is stored in the %BackupName% parameter variable or
whatever variable name you choose to use here. The number of changes actually made to the CONFIG.SYS
are stored in the %Changes% variable. This makes it possible to display a message informing the user of the
backup file and how many changes were made.
The bCreateAnyWay parameter is only relevant where the CONFIG.SYS file does not already exist. The value
may be TRUE to create the file if it does not exist or FALSE if the file is not to be created. If the
CONFIG.SYS file is created because it doesn't already exist, no backup file is created and therefore the
%BackupName% variable holds an empty string.
If no changes were made to the CONFIG.SYS file, the backup file is deleted and the original file remains
intact. This stops backup files being created when no changes have been made.
If the ChangeConfig function does not find a FILES= or BUFFERS= statement in the CONFIG.SYS file it will
add them to the end of the file, depending on whether a positive value has been supplied for the nFiles and
nBuffers parameters.

Example
ChangeConfig("C:\CONFIG.SYS", 100, 50, %BackupFile%, %Changes%, TRUE)
IF %Changes% == 0 MessageBox("No changes were made to the CONFIG.SYS file", "Setup", MB_OK,
MB_ICONINFORMATION)
IF %Changes% != 0 MessageBox("%Changes% change(s) were made to the CONFIG.SYS file. A backup
copy has been created in file %BackupFile%", "Setup", MB_OK, MB_ICONINFORMATION)

CloseDeInstall

Format
CloseDeInstall()

Purpose
Closes a de-install script previously opened by the OpenDeInstall function.

Parameters
None

Return Value
None

Comments
Please see the help section on OpenDeInstall for a full description of how the de-install script file operates.

See Also
OpenDeInstall, AddDeInstall

Close

Format
Close()
Close(stream)

Purpose
Closes a file stream, freeing it for later re-use

Parameters
• Optional stream number of file to close (1 - 10)

Return Value
None

Comments
The function closes the file in the specified stream. If there is no file open in the specified stream, this function
is ignored.
The stream number parameter is optional. If omitted, all file streams will be closed

Example
This example reads the CONFIG.SYS file and writes it out to TEMP.DAT having changed the FILES entry to
100

Open("C:\CONFIG.SYS", 1, READ)
IF %ERROR% == TRUE GOTO :OPENERROR

Open("C:\TEMP.DAT", 2, WRITE)
:NEXTLINE
ReadLine(1, %Buffer%)
IF %ERROR% == EOF GOTO :EOF

SET %Ptr% = Instr(1, %Buffer%, "FILES=")
IF %Ptr% == 0 GOTO :NOTFOUND

Set %Buffer% = "FILES=100"

:NOTFOUND
WriteLine(2, %Buffer%)
GOTO :NEXTLINE

:EOF
Close(1)
Close(2)

.

.

:OPENERROR

See Also
Open

Command Directory

 CALL CALL another script
 EXIT EXIT to higher level script
 GOTO Control branching command
 IF Comparison command
 SET Variable assignment command
 STOP STOP all script processing

ConfirmOverwrite

Format
ConfirmOverwrite("oldfile", "Newfile", "overwrite message", onlyifolder)

Purpose
Checks to see if a file exists and then asks the user about overwriting it if it does exist. There are several
options on how this can be done

Parameters
• Name of existing file to be overwritten
• Name of new file to overwrite with
• Message to prompt with if file found
• Ask about overwrite only if new file is older than existing file:

0 No check (always prompts with message)
1 Prompt if new file is older than existing file

Return Value
The %ERROR% variable holds the error status:

• IDNO The user doesn't want the file overwritten
• IDYES Proceed to overwrite the file

Comments
When confirming an overwrite of older files and prompting, the ConfirmOverwrite function always assumes
that two files which are the same will not be required to be overwritten and therefore always returns IDNO and
doesn't prompt with a message in this situation.
ConfirmOverwrite uses the Windows VER.DLL functionality to determine file versions. If the two files being
compared contain file version information it is used to perform the version comparison (dwFileVersionMS and
dwFileVersionLS), using the file version number. If one or both files do not contain version information, a
comparison of file dates and times is performed instead. In this way, both files containing version information
(such as .EXE and .DLL files) and those not containing it (Text files, older .EXE and .DLL files) can be
handled.
ConfirmOverwrite only checks whether a file exists. To confirm whether a file is currently in use by Windows,
use the GetModuleInUse function.

Example
ConfirmOverwrite("C:\WINDOWS\NOTEPAD.EXE", "A:\NOTEPAD.EXE", "Notepad already exists!", 0)
IF %ERROR% == IDYES CopyFile("A:\NOTEPAD.EXE", "C:\WINDOWS\NOTEPAD.EXE")

See Also
GetModuleInUse, CheckExists

Predefined Constants

The interpreter supports the following predefined constants whose numeric equivalents are listed.
The constant or its numeric value may be used in any place where a numeric parameter is permitted.

Message Box Keys
MB_OK 0
MB_OKCANCEL 1
MB_ABORTRETRYIGNORE 2
MB_YESNOCANCEL 3
MB_YESNO 4
MB_RETRYCANCEL 5

Message Box Icons
MB_ICONSTOP 16
MB_ICONQUESTION 32
MB_ICONEXCLAMATION 48
MB_ICONINFORMATION 64

Return Keys from MessageBox / DialogBox functions
IDOK 1
IDCANCEL 2
IDABORT 3
IDRETRY 4
IDIGNORE 5
IDYES 6
IDNO 7
IDBACK 10
IDBUTTON1 11
IDBUTTON2 12
IDBUTTON3 13
IDBUTTON4 14
IDBUTTON5 15

Logical Values
TRUE 1
FALSE 0

End Of File
EOF 2

Contents for Setup Script Help

Setup is a utility program for providing Windows-hosted procedures for installing Applications.
Press the F1 key for for Help on using Windows Help.

 What is Setup ?

 Creating a setup procedure

 Standards and Notations
 Command Directory
 Function Directory
 User Defined Dialogs - Overview
 Coordinate System
 Windows Registry - Overview
 OLE Control Registration - Overview

 Error Message Directory
 Predefined/DOS Environment Variables
 Predefined Constants
 Reserved Labels and Variable Names

 Suggestions for use

 Help File Copyright

Coordinate System

The Setup script interpreter uses the following coordinate systems when displaying user defined objects:

Backdrops
A backdrop always covers the complete screen.
The physical pixel coordinate system is used.
The top left of the backdrop is (0, 0) and the bottom right is (width - 1, height - 1), depending on the screen
driver currently loaded.

Cue Cards
Cue cards are positioned on the screen on the basis of the physical pixel coordinate system and their width is
also in physical pixels. Controls within a cue card are also based on the physical pixel system, but the control
coordinates are offsets from the left and top of the cue card, starting at 0, 0 for the top left of the cue card.

Dialogs
Dialogs are positioned on the screen on the basis of the physical pixel coordinate system, but the height and
width are in 'dialog units'. Controls within a dialog are also positioned on the basis of 'dialog units'.

CopyFile

Format
This command has two formats:

Method 1
CopyFile("source file name", "target directory", uncompress, append, delete)

Method 2
CopyFile(n)
"source file name", "target directory", "message", uncompress, append, delete

Purpose
Copies file(s) from one location to another.

Parameters
Method 1
• String source file name which may include paths

and wildcards
• Target directory/file name.

This may contain a complete filename but must not contain wildcards
• Open for uncompression

TRUE Open the source file and uncompress it (default)
FALSE Do not open for uncompression

• Copy and append
TRUE Copy file, appending to existing file with same name
FALSE Do not append to existing file - overwrite it (default)

• Delete after copy
TRUE Delete the source file after copying
FALSE Do not delete the source file after copying (default)

Method 2
The function call contains the number of files to be copied. This is so that the gauge knows how many files it is
to represent and does not affect the actual number of files copied. It does not matter if you get the number
wrong, but you might find the gauge visually fills up before you expected it to or not to fully fill up.
The file name parameters are listed in the lines after the command:

• String source file name which may include paths and wildcards
• Target directory/file name.

This may contain a complete filename but must not contain wildcards
• String message which can be used to tell the user in the

'copy dialog' what files are being copied
• Open for uncompression

TRUE Open the source file and uncompress it (default)
FALSE Do not open for uncompression

• Copy and append
TRUE Copy file, appending to existing file with same name
FALSE Do not append to existing file - overwrite it (default)

• Delete after copy
TRUE Delete the source file after copying
FALSE Do not delete the source file after copying (default)

Return Value

The %ERROR% variable holds the error number

Comments
Method (1) performs a straight copy whereas method (2) displays a 'gauge' to show copy progress. The number
10 in the example below would represent the number of files being copied. This is used purely for the purpose
of the fuel gauge to know how many files it should represent. If it is incorrect, it doesn't matter, but you may
find the gauge finishes too soon or not at all. It does not affect the number of files copied.

Note that source file names may contain drive, path and wildcard specifications.
Target file names can contain a path name and/or a file name, but they must NOT contain wildcards. Path
names may end with a \ but this will be appended automatically if not supplied.
The 'Description' parameter is optional and may be left off, but if supplied will be displayed at the top of the
copy files dialog to inform the user of what is being copied.

The CopyFile function will handle files compressed using the Microsoft COMPRESS.EXE utility. In this
situation CopyFile will automatically read in the compressed file and write it out in its expanded form (ie
uncompressed form). CopyFile automatically recognises whether a file is compressed and always
uncompresses it, regardless of the file extenesions involved.

Example
Method 1
CopyFile("A:*.BAT", "C:\BATCH")

Method 2
CopyFile(10)
"A:*.BAT", "C:\BATCH", "Copying: Program batch files"

This Windows Help file was written by Graham Plowman
using Help Builder Version 1.09.001 and refers to:

Setup Version 4.04.002 / 09/01/97

Copyright 1993 - 1996 G.Plowman

CreateBackdrop

Format
CreateBackdrop("ObjectName")

Purpose
Creates a user defined backdrop object and assigns it the name 'ObjectName'.

Parameters
• String name of the new backdrop object

Return Value
None

Comments
If an object already exists with the same name, it is automatically overwritten.
To display a backdrop, use the ShowBackdrop function.
A backdrop may contain the following controls created using the CreateControl function:

text
icon
bitmap
colourblock

A backdrop definition must end with the EndObject function.

Example
CreateBackdrop("MYBACKDROP")
CreateControl("text", "My Application Setup", -1, 50, 50, 0, 0, 0, "Times New Roman", 50, 3, 16777215, 0)
EndObject()

ShowBackdrop("MYBACKDROP")

See Also
CreateControl, EndObject, ShowBackdrop, Coordinate System

CreateControl

Format
CreateControl("Text", "Caption", nId, nX, nY, nWidth, nHeight, nStyle, "FontName", nFontSize,
nShadowOffset, nTextColour, nShadowColour)
CreateControl("Edit", "Caption", nId, nX, nY, nWidth, nHeight, nStyle, %variable%, nEditLen)
CreateControl("GroupBox", "Caption", nId, nX, nY, nWidth, nHeight, nStyle)
CreateControl("Icon", "iconname", nId, nX, nY, nWidth, nHeight, nStyle)
CreateControl("Bitmap", "filename.bmp", nId, nX, nY, nWidth, nHeight, nStyle)
CreateControl("CheckBox", "Caption", nId, nX, nY, nWidth, nHeight, nStyle, %variable%)
CreateControl("RadioButton", "Caption", nId, nX, nY, nWidth, nHeight, nStyle, %variable%)
CreateControl("Button", "Caption", nId, nX, nY, nWidth, nHeight, nStyle)
CreateControl("ColourBlock", "", nId, nX, nY, nWidth, nHeight, nStyle, nColour)
CreateControl("ListBox", "Items", nId, nX, nY, nWidth, nHeight, nStyle, %variable%)
CreateControl("ComboBox", "Items", nId, nX, nY, nWidth, nHeight, nStyle, %variable%, nEditLen)
CreateControl("DropList", "Items", nId, nX, nY, nWidth, nHeight, nStyle, %variable%)

Purpose
Creates a control on a user defined Backdrop, Cue Card or Dialog object which has been previously created by
the CreateBackdrop, CreateCueCard or CreateDialog function.
With the exception of the control types listed above, the first format should be used to create all other control
types.

Parameters
• String name of the control type to create. This may be:

Text
Edit
GroupBox
Icon
Bitmap
CheckBox
RadioButton
Button
Colour Block
ListBox
ComboBox
DropList

• String text/caption of the control. For an icon, this is the name of the icon.
• Numeric Id of the control (relevant to edit, button, radiobutton, checkbox)
• Numeric X coordinate of control
• Numeric Y coordinate of control
• Numeric width of control
• Numeric height of control
• Numeric style of the control
• Variable to retrieve default value from and place resulting input (edit, radiobutton, checkbox only)
• Numeric number of characters to limit an edit control to
• Font name to use
• Font size to display text as
• Offset position of shadow text
• Foreground colour of text
• Shadow colour
• Horizontal positioning of bitmap

0 None (Use coordinates)

1 Left
2 Right
3 Centred

• Vertical positioning of bitmap
0 None (Use coordinates)
1 Top
2 Bottom
3 Centred

• Colour of colour block

Return Value
None

Comments
Icon names
Setup has all the icons from the \ICONS\COMPUTER directory supplied with Visual Basic 3 encoded into it.
All of the icons have the same names as the corresponding Visual Basic icon files, less the file extension. To
use any of these icons, simply place the name in the caption/text parameter of the CreateControl function eg
"Disk01".
There is also an additional "Setup" icon.

Bitmaps
To display a bitmap, supply the file name of the bitmap as the caption/text parameter. A run-time error will
occur if the bitmap file cannot be found.
Setup Builder supports both 16 and 256 colour bitmaps, although they must ONLY be Windows Device
Independent Bitmaps (DIBs) and not OS/2 bitmaps.

Styles
The Setup interpreter supplies the basic default styles necessary to display controls, however, nearly all of the
Windows controls have specific attributes which may be selected using the style parameter of the
CreateControl function. Listed below are the styles for each type of control, together with a number. To use
any one or more of the styles for a control, simply add the numbers together and insert the result as the style
parameter to the CreateControl function.

text
0 Allign left text (default)
1 Center text
2 Right allign text
128 Bold
8388608 Border

edit
0 Allign left text (default)
1 Center text
2 Right allign text
4 Multiline edit
8 Convert to upper case
16 Convert to lower case
32 Display as password (*) characters
64 Auto vertical scroll
128 Auto horizontal scroll
2048 Read-only edit field
4096 Want return (multiline edit only)

8388608 Border (default - required for CTL3DV2)

button
1 Make button the 'default' 'Ok' button

groupbox None

icon None

radiobutton
Allign text right (default)

16 Allign text left (warning: CTL3DV2 doesn't display correctly)

checkbox
Allign text right (default)

16 Allign text left (warning: CTL3DV2 doesn't display correctly)

listbox
2 Sort list

combobox
droplist

256 Sort list

Numeric Ids
Numeric identifiers are used by controls which can receive input from the user and provide an internal link for
the Setup program to set and retrieve values from controls. Within a dialog, they must be unique. All controls
which don't accept user input such as icon, text, groupbox should be given an Id of -1 which denotes 'not used'.
It is recommend that to avoid conflict, you start numbering Ids from 20 because the lower numbers are used by
the values IDOK, IDCANCEL, IDYES, IDNO etc
Note that push buttons will only respond to the standard message box key Predefined Constants.

Variables
edit, radiobutton, checkbox, listbox, combobox and droplist controls all accept input from the user. The
interpreter provides a simple way of retrieving values from these controls by simply populating a variable with
the value entered in the control. The variable is also used to 'pre-populate' a control as well. A variable should
always be supplied for a control which accepts user input.

Example
Please see the example in the CreateDialog function documentation.

See Also
Coordinate System

CreateCueCard

Format
CreateCueCard("ObjectName", nX, nY, nWidth, nHeight [, nBorder])

Purpose
Creates a user defined cue card object and assigns it the name 'ObjectName'.

Parameters
• String name of the template to create
• Numeric X coordinate of cue card in logical units
• Numeric Y coordinate of cue card in logical units
• Numeric width of cue card in logical units
• Numeric height of cue card in logical units
• Optional border which may be

0 None (the default)
1 Single black line border)
2 3d Sunken border
3 3d Bevel border

Return Value
None

Comments
If an object already exists with the same name, it is automatically overwritten.
To display a cue card, use the ShowCueCard function.
To hide a cue card, supply an empty string parameter to the ShowCueCard function.
A cue card may contain the following controls created using the CreateControl function:

text
groupbox
icon
bitmap
colourblock

A cue card definition must end with the EndObject function.
To destroy a cue card definition, use the DestroyObject function.
Cue Cards do not appear if there is no backdrop currently displayed.

Example
CreateCueCard("MYCUECARD", 20, 20, 250, 150, 2)
CreateControl("text", "Setup Builder", -1, 20, 20, 0, 0, 0, "Times New Roman", 40, 2, 16777215,0)
EndObject()

ShowCueCard("MYCUECARD")

See Also
CreateControl, EndObject, ShowCueCard, Coordinate System

CreateDialog

Format
CreateDialog("template name", "caption", nX, nY, nWidth, nHeight)

Purpose
Creates a user defined dialog object template in memory

Parameters
• String name of the template to create
• String caption to be displayed on the dialog
• Numeric X coordinate of dialog in dialog units
• Numeric Y coordinate of dialog in dialog units
• Numeric width of dialog in dialog units
• Numeric height of dialog in dialog units

Return Value
None

Comments
The Setup program has an internal table reserved for creating user-defined dialogs.
A dialog is created in this table by using the CreateDialog function, although creating a dialog does not display
the dialog. To display a dialog a call must be made to the DialogBox function, passing the template name of
the user defined dialog.

It is possible to create dialogs with the same name as any of the in-built dialog templates and by doing so, you
effectively overide the in-built dialog template since user defined template names take precedence over in-built
template names.

The lines in the script file following the CreateDialog function call must contain calls to the CreateControl
function to define the controls on the dialog. The EndObject function should follow the last control/dialog
definition statement. This supercedes the old standard whereby a blank line marked the end of a dialog
definition. The blank line standard will be dropped from future versions of the script interpreter, so you should
use EndObject to mark the end of a dialog definition.

It is possible to create a user defined dialog with the same name as an existing user defined dialog. In this
situation, the interpreter automatically deletes the old template and then creates a new template. This is exactly
the same as manually calling DestroyObject before creating a dialog.

Example
The following example creates a typical setup dialog which requests a user to enter the path names for the
various components of an application being installed. You can paste this example directly into a script and run
it as a parameter file name to the INSTxx.EXE program.

CreateDialog("DIRECTORIES","Directories",40,40,260,145)
CreateControl("GroupBox","",-1,6,4,247,110,0)
CreateControl("Icon","SETUP",-1,15,20,150,45,0)
CreateControl("Text","Please enter the directories in which to place the|%Application% software files:",-
1,50,20,150,45,128,"MS Sans Serif",15,0,0,0)
CreateControl("Text","Application Executeables",-1,30,55,150,45,128,"MS Sans Serif",15,0,0,0)
CreateControl("Edit","",21,130,53,100,12,8388736,%Exes%,100)
CreateControl("Text","Sample script files",-1,30,71,150,45,128,"MS Sans Serif",15,0,0,0)
CreateControl("Edit","",22,130,69,100,12,8388736,%Script%,100)

CreateControl("Text","Help Files",-1,30,87,150,45,128,"MS Sans Serif",15,0,0,0)
CreateControl("Edit","",23,130,85,100,12,8388736,%Help%,100)
CreateControl("Button","&Ok",IDOK,6,126,40,14,0)
CreateControl("Button","&Cancel",IDCANCEL,52,126,40,14,0)
CentreDialog(3,3)
SetFocus(21)
EndObject()

DialogBox("DIRECTORIES")

MessageBox("Executables: %Exes%|Script Files: %Script%|Help Files: %Help%", "Test", MB_OK, 0)
stop

See Also
CreateControl, CentreDialog, SetFocus, DialogBox, EndObject, Coordinate System

Creating a setup procedure

To create a setup procedure the following components are required, although SETUP.EXE is only required in
certain situations:

• The SETUP.EXE installer program

• The INSTxx.EXE interpreter program

• The CTL3DV2.DLL 3d control handling DLL
This is already installed on most PC's today

• The CLEANUP.EXE tidy-up utility

• A setup script (.SCR) file (created by hand or by Setup Builder)

There are two configurations in which the Setup utility may be used:

Running from Diskette
In this case all of the above files are required on the first diskette of your installation suite.
The SETUP.EXE program copies the INSTxx.EXE and SETUP.SCR files to the WINDOWS\TEMP directory
(which it also creates) of the machine on which the program is running. It also copies CTL3DV2.DLL to your
WINDOWS\SYSTEM directory if the file does not already exist. SETUP.EXE then runs the INSTxx.EXE
interpreter program which runs the script file from the hard disk. This is necessary since install procedures
often request diskette changes which would otherwise cause INSTxx.EXE to fail if it was running from a
diskette. You cannot run an executeable from a diskette under Windows and then remove the diskette!
INSTxx.EXE does not remove itself or SETUP.SCR from the hard disk when it has completed. To do this, the
script must run the CLEANUP.EXE program from your last installation diskette. This is done automatically by
installation procedures created using Setup Builder.

WARNING: If SHARE.EXE is running and your script file attempts to delete INSTxx.EXE or SETUP.SCR
you will get a 'Share violation error' from Windows.

Running from a hard disk or network drive
In this case only INSTxx.EXE and a .SCR file are required. Note that INSTxx.EXE takes the name of the
script file as its parameter so the script file can have any name whereas SETUP.EXE above always assumes a
name of SETUP.SCR.
You may place INSTxx.EXE on Windows Program manager as an icon with the script file name as a
parameter. You can also set up a file association with File Manager such that double-clicking on a script file
will cause INSTxx.EXE to run it. This is optionally set up for you when you install the Setup Builder software
on your machine.

Procedure for creating install suites
In order to create a successful windows hosted software installation procedure it is adviseable that you carry
out the following steps:

• Plan what is to be installed

• Plan what options the user is to be given

• Plan the layout of files on the disk / diskettes

• Ensure that the installation procedure is as
simple as possible - users do not expect
to see technical terms or complicated
installation procedures that they can't use

• Ensure that the user is given feedback on what
is being or has been installed

• Above all, ensure that your script is bug-free
by testing it in as many environments as possible

Creating a script file
A setup script file is purely an ASCII text file which may be created with any ASCII file editor. Alternatively
you can use the Setup Builder application to automatically build a setup script and the appropriate diskettes for
you.
Be warned that Windows Notepad has an error in it which causes a file not to have a carriage return placed on
the last line of the file unless you explicitly place blank lines at the end. This can cause problems with setup
and with many other ASCII file editors since the end of the file is found on reading before an end of line
marker.

Delete

Format
Delete("File name")

Purpose
Deletes a file

Parameters
• String name of file(s) to be deleted

Return Value
The %ERROR% variable hold the error status:

• TRUE Error - file not found or deleted
• FALSE Success

Comments
The file name may contain both wild cards and/or drive/path specifications.
Note that you cannot delete a file if it is currently opened via the Open function. A file cannot be deleted if it is
currently open in another application or it in use by Windows

Example
Delete("C:\AUTOEXEC.BAT")
Delete("C:\ABC.BAT")

DeleteGroup

Format
DeleteGroup("group name")

Purpose
Deletes a program group from Windows Program Manager

Parameters
• String name of group to be deleted

Return Value
None

Comments
The group name is the name which appears in the caption of the group when it is displayed by Program
Manager.
If the specified group does not exist, this function has no effect.

Example
DeleteGroup("TEST")

See Also
MakeGroup

DeleteIcon

Format
DeleteIcon("name")

Purpose
Deletes an icon within the currently selected program manager group

Parameters
• String name of icon to delete

Return Value
None

Comments
The icon name is the text which appears below the icon in Program Manager.
If the icon does not exist, this function has no effect.

Example
DeleteIcon("Editor")

See Also
MakeIcon

DestroyObject

Format
DestroyObject("ObjectName")

Purpose
Deletes a user defined object definition from the internal template table, freeing memory for creation of new
objects

Parameters
• String name of the object to destroy

Return Value
None

Comments
Destroying an object simply removes the object template definition from the internal table memory, freeing
space for another object to be created. Objects may be freely created and destroyed at any time. Attempting to
destroy an object which does not exist, has no affect.
Note that you cannot destroy the in-built dialog templates, however, if you create a user defined dialog to
overide an in-built dialog, deleting the user-defined template restores the use of the in-built template.
If you delete a Backdrop object while it is being displayed, the backdrop display will be hidden.
Likewise, if you delete a Cue Card object while it is being displayed, the cue card will be hidden.

Example
DestroyObject("MyDialog")

See Also
CreateBackrop, CreateCueCard, CreateDialog

DialogBox

Format
DialogBox("dialog name")

Purpose
Activates one of the predefined dialog boxes or a user-defined dialog object previously created by the
CreateDialog function.

Parameters
• String name of dialog to display

Return Value
The %ERROR% variable contains the push/command button which terminated the dialog:

• IDOK
• IDCANCEL
• IDBACK
• IDBUTTON1
• IDBUTTON2
• IDBUTTON3
• IDBUTTON4
• IDBUTTON5

Any data entered in fields or buttons is returned in the following variables:
• %BUTTON1% For CHECKBOXn dialog boxes

to
%BUTTON6%

• %RADIOBUTTON% For RADIOBn dialog boxes
• %EF_1% or For INPUTBOXn dialog boxes

%EF_2%

Comments
The dialog name may be one of the following:

• "WELCOME" Display the Welcome to setup dialog
with an icon

• "ASKPATH" Display dialog to ask user install path
• "OKBOX" Display a standard Ok confirmation dialog

with icon
• "CHECKBOX1" Display a dialog with 1 checkbox
• "CHECKBOX2" Display a dialog with 2 checkboxes
• "CHECKBOX3" Display a dialog with 3 checkboxes
• "CHECKBOX4" Display a dialog with 4 checkboxes
• "CHECKBOX5" Display a dialog with 5 checkboxes
• "CHECKBOX6" Display a dialog with 6 checkboxes
• "RADIOB1" Display a dialog with 1 radio button
• "RADIOB2" Display a dialog with 2 radio buttons
• "RADIOB3" Display a dialog with 3 radio buttons
• "RADIOB4" Display a dialog with 4 radio buttons
• "RADIOB5" Display a dialog with 5 radio buttons
• "RADIOB6" Display a dialog with 6 radio buttons
• "INPUTBOX1" Display a dialog with 1 input field

• "INPUTBOX2" Display a dialog with 2 input fields
• "LICENSE" Display licensing dialog
• "PUSHB2" Display a dialog with 2 push buttons
• "PUSHB3" Display a dialog with 3 push buttons
• "PUSHB4" Display a dialog with 4 push buttons
• "PUSHB5" Display a dialog with 5 push buttons
• "DEINSTALL" Displays the de-install option dialog

Each of the dialogs has predefined text fields which you may change by setting the following variables:

• %CAPTION% Caption of the dialog
• %MESSAGE1% First static text field within the dialog

to
%MESSAGE6% Last static text field within the

dialog (depends on dialog)
• %INSTALLPATH% Sets the default prepopulated value

of the edit field in the ASKPATH dialog
• %BUTTON1% Preset status of check boxes in

to CHECKBOX dialogs. A '1' signifies
%BUTTON6% a check ie on.

Also used to return the states of
the buttons on exit from the dialog

• %RADIOBUTTON% Holds the initially active radio
button within the RADIOB dialogs.
The first button is 1, the last 6,
depending on the dialog.
Also used to return the selected button.

• %INIFILE% Controls the .INI file to which
the Licensing dialog writes the
name/company entered by the user.

• %PUSHB_1% Holds the text to be displayed on the push
to buttons within the PUSHB dialogs.

%PUSHB_5% The first button is 1, the last 5,
depending on the dialog.

Note: The ASKPATH dialog in previous versions of the script interpreter used to automatically check the path
entered by the user by attempting to create the directory. This feature has now been dropped and the user must
write script code to create the directory instead. Setup Builder automatically does this for you when it creates
an installation suite.
The reason for dropping the directory create feature was to make overriding the ASKPATH dialog simple.
Previously, overriding it did not maintain the directory create feature, consequently the overidden functionality
was not the same as the in-built dialog functionality. It now is.

Example
DialogBox("OKBOX")

See Also
MessageBox, CreateDialog, Predefined Constants, User Defined Dialogs

DllSelfRegister

Format
DllSelfRegister("filename.ocx")

Purpose
Causes a self-registering OLE DLL to self-register itself with the Windows registry.

Parameters
• Fully qualified file name of OLE control to register.

Return Value
None

Example
DllSelfRegister("C:\MYDIR\MYDLL.OCX")

DllSelfUnRegister

Format
DllSelfUnRegister("filename.ocx")

Purpose
Causes a self-registering OLE DLL to unregister itself from the Windows registry.

Parameters
• Fully qualified file name of OLE control to unregister.

Return Value
None

Example
DllSelfUnRegister("C:\MYDIR\MYDLL.OCX")

EndCopyFile

Format
EndCopyFile()

Purpose
Terminates the CopyFile dialog.

Parameters
None

Return Value
None

Comments
When the CopyFile function is used in the following format:

CopyFile(n)

where 'n' is a number, a dialog appears which displays a progress gauge to inform the user of the status of file
copying.
The dialog remains present on screen until either a blank line is found in the script file or the EndCopyFile()
function is executed.
It is recommended that EndCopyFile() is used in all newly created scripts to terminate the CopyFile dialog
instead of the old standard of the blank line. The blank line standard will be dropped from future versions of
the interpreter.

See Also
CopyFile

EndObject

Format
EndObject()

Purpose
Marks the end of a user-defined object definition.

Parameters
None

Return Value
None

Comments
The EndObject function must be used to mark the end of all Backdrop, Cue Card and Dialog object definitions.
Older versions of the Setup script interpreter used a blank line to denote the end of an object definition - this
feature will be removed from future versions of the interpreter, so you should always use EndObject.

Example
Please see the example in the CreateDialog function documentation.

Error Message Directory

01 Invalid command
This error occurs when a command or function is encountered which the interpreter does not recognise.
See Command Directory, Function Directory

02 Invalid parameters
This error occurs when the wrong 'type' of parameter is given to a command or function, for example a number
given where a string is expected

03 Variable not found
This error occurs when an undefined variable is passed as a parameter. In future versions of Setup this error
message will no longer occur because undefined variables will default to an empty string

04 Invalid variable name
A variable name must start with and end with a % character. If the trailing % is left off, this error will result.
See Variables

05 Label not found
A GOTO command is attempting to pass control to a label which cannot be found within the script file. Check
that the label starts with a colon : both after the GOTO command and on the line to be branched to

06 Invalid string
A string must start with and end with a " character. If the trailing " is left off, this error will result.
See Variables

07 Label too long
A label may be a maximum of 20 characters. This error results if an attempt is made to use longer name.
Check that the label ends with a space character, end of line or that there is at least one space after it before a
comment.
See Labels

08 String stack full
Too many strings have been defined within a command. The limit is 20. No Setup command or function should
reach this limit, so if this error occurs it is likely that you have a severe syntax error!

09 Numeric stack full
The same applies to numbers as in error 08

10 Variable name too long
A variable name may be up to 20 characters long. This error occurs when an attempt is made to use a longer
name or if the trailing % sign is left off of the variable name.
See Variables

11 Text too long
Text strings may be up to 254 characters long. This error occurs when an attempt is made to use a string (with
no embedded variables) which is longer than 254 characters or the trailing " character has been left off.
See Strings

12 Invalid label
This error occurs when an invalid label is passed as a parameter to the GOTO command. You cannot supply
strings or variables to this command

13 Invalid template name
An attempt has been made to use the DialogBox() function but an invalid dialog template name was supplied.
See DialogBox

14 String concat too long
A string may be a maximum of 254 characters. This error usually results when embedded variables in a string
are used to concatenate strings and the resulting string is longer than 254 characters.
See Strings/Variables

15 No space on target drive
The CopyFile() function has been called to copy a file and there is not enough space on the target drive for the
file

16 Source file not found
The CopyFile() function has been called to copy a file but the file could not be found

17 Failure while copying
The CopyFile() function failed while copying. This usually occurs if the user removes a diskette while copying
from it or if a disk read failure occurs

18 Out of variable space
Setup allows up to 50 variables to be defined at a time. This error occurs when an attempt is made to create
more variables. Assign variables to empty strings to clear space

19 Source and target file names must not be the same
The CopyFile() function has been called and both the source and target file names are the same - you cannot
copy a file onto itself

20 Invalid string parameter
A function has been called which expects a string parameter in the indicated position

21 Invalid numeric parameter
A function has been called which expects a numeric parameter in the indicated position

22 Missing variable name
This error occurs when the target return variable parameter is left off of the GetPrivateProfileString() function

23 Invalid comparison operator
The IF command has been supplied with an invalid comparison operator.
See IF

24 Invalid comparison value
This error occurs when the two values for comparison by an IF command are not of the same type.
See IF

25 Invalid date format specified
This error occurs when an invalid date format is specified to the date functions.
See GetDate, GetFileDate

26 Invalid arithmetic operator. Operator must be + - * or /
This error occurs with the SET statement when arithmetic operations are being performed.
Setup only supports addition, subtraction, multiplication and division of integer numbers.
See Set

27 String subscript out of range
This error occurs with the string handling functions when a position within a string is specified which doesn't
exist.
This may be because the value specified is negative or because the value is greater than the maximum length
that a string is allowed to be (ie 254 characters)
See Left, Right, Mid, Instr

29 Unable to open script file
This error occurs when an attempt is made to CALL a nested script file which cannot be found.
See CALL

30 Attempt to open too many nested script files
This error occurs when an attempt is made to CALL a nested script file when the maximum number of nested
script files allowed has been reached.
See CALL

31 Invalid dialog command
A command has been found within some script which is creating a user defined dialog and the command is not
recognised as a dialog related command.
When creating user-defined dialogs, you can only use the dialog commands within your script until the
terminating blank line at the end of the dialog creation script.
See User Defined Dialogs

32 Attempt to create too many dialogs
An attempt has been made to create more than the maximum allowed number of user defined dialogs.
See CreateDialog

33 Attempt to create too many controls
An attempt has been made to create more than the maximum allowed number of controls in a user defined
dialog.
See User Defined Dialogs

34 Invalid control type
This error occurs when an invalid control name to be created is specified for the CreateControl function.

35 Failed to allocate memory for internal use
This error occurs usually only in low-memory situations and normally only when handling user-defined
dialogs.

36 Failed to initialise user defined dialog
This error occurs when the DialogBox function is used to activate a user-defined dialog and the Windows API
InitModalIndirect function (which is used to initialise the dialog resource template for the user-defined dialog)
fails.
This normally only occurs in low memory situations.

37 Invalid file stream specified
A file stream has been specified for one of the ASCII file handling functions and the stream is not in the valid
range.
See Open, Close, ReadLine, WriteLine

38 Specified file stream is already in use
An attempt has been made to open a file in a stream which is already open. A stream can only be open for

reading or writing but not both at the same time.
See Open

39 Specified file stream is not open
An attempt has been made to read data from or write data to a file stream which is not currently open.

40 Specified file stream is not open for reading
An attempt has been made to read from a file stream which has been opened for writing.
See Open

41 Specified file stream is not open for writing
An attempt has been made to write to a file stream which has been opened for reading.
See Open

42 Invalid target file name
An attempt has been made to use the CopyFile function to copy a file to an invalid target file name.

43 Unsupported language specified
An attempt has been made to use the SetLanguage function to select a language which is not supported by the
script interpreter.

44 Failure while reading file
An error has occured while reading a file during file copying. This is normally due to a corrupted file or disk.

45 Failure while writing file
An error has occured while writing a file during file copying. This is normally due to a corrupted file or disk.

46 Failed to create target file
The specified target file name could not be created, either because it is an invalid name, the file/disk is write
protected or a disk failure occured.

47 Failed to initialise DDEML
Setup has failed to initialise the DDEML Dynamic Link Library which is used to manage DDE conversations
between Setup and Program Manager.
This could be because DDEML.DLL is missing or it is an old version.

48 Failed to start DDE coversation with Program Manager
Setup has failed to start a DDE conversation with Program Manager.
This could be because Program Manager has failed to respond or because it is not running. It can also occur
when a replacement Program Manager product does not support the 'Shell Dynamic Data Exchange' protocol
supported by Program Manager for maintaining groups and icons.

49 A DDE error has occured while communicating with Program Manager
This error occurs if a Program Manager function fails due to a communications failure in the underlying DDE
transaction.

50 Invalid file mode
This error occurs when an attempt has been made to open a file using an invalid file mode. The file mode must
be READ, WRITE or APPEND
See Open

51 Label stack full
This error occurs when an attempt is made to execute a script which has too many labels.

The interpreter opens a script file and reads all the labels within the script, appending them to a label stack.
This is done so that the GOTO command can be executed directly to the appropriate location in the script. The
stack which stores all the labels has a limited size. This error occurs when there are too many labels to add to
the stack - around 450 are allowed.
The error normally only occurs when a script is first executed or the CALL statement is used to execute a
nested script file.
See CALL

52 Unable to find or open script file
This error occurs when an attempt is made to run the script interpreter and pass it an invalid or non-existant
script file name to run.

53 Failed to load the specified bitmap file
This error occurs when the interpreter fails to load a bitmap file.
This can be because the file simply cannot be found, or because it is not recognised as a Windows Device
Independent Bitmap (DIB).
The interpreter does not support OS/2 bitmaps or formats other than Windows DIBs.

54 Attempt to display an object which is not a Backdrop Object
The ShowBackdrop() function has been called to display an object which has not been defined as a backdrop
object.

55 Attempt to display an object which is not a Dialog Object
The DialogBox() function has been called to activate a user-defined dialog object which has not been defined
as a dialog object.

56 Attempt to display an object which is not a Cuecard Object
The ShowCueCard() function has been called to display an object which has not been defined as a cuecard
object.

57 Invalid command for the type of object being created
An attempt has been made to execute a user-defined object command which is not valid for the type of object
specified, for example, SetFocus() is not valid for a cuecard object because a cuecard does not contain any
controls which can be given focus.

58 Invalid control type for the object being created
An attempt is being made to create a control within an object and the control type being created is not valid for
the type of object, for example, edit fields are not allowed on backdrop objects.

59 Attempt to create an object with too many bitmaps
An attempt has been made to create an object with too many bitmaps. Objects are limited to 8 bitmaps.

60 Object not found
61 Object 'ObjectName' not found
An attempt has been made to execute a command which refers to an object which does not exist.

62 Bitmap file not found
An attempt has been made to create a bitmap control or display a dialog object containing a bitmap control and
the bitmap file cannot be found. Ensure that the file name of the bitmap is correct and that the bitmap exists,
then again.

63 Failed to create Registry entry
Writing to the registry failed to create the requested entry. This normally occurs when invalid parameters are

specified or security (eg under Windows NT) prevents access to writing a registry entry.

64 Failed to allocate memory for the label buffer
This is an internal error which occurs if a script is executed which has very large numbers of labels. The label
buffer is 64K in size. When there are too many labels to store in the buffer, this error occurs.
Labels are stored in a buffer together with file position pointers to enable fast access to lines within a script
without performing a sequencial search through the script file for a label. This only affects the GOTO
command.

65 Invalid command outside of object creation
This error occurs when one of the user defined object commands (eg CreateControl()) is executed outside of a
CreateBackrop/Dialog/CueCardt() ... EndObject() block. Certain commands are only valid inside this block.

66 OLE Control file not found
An attempot has been made to register/unregister an OLE control file using DllSelfRegister or
DllSelfUnRegister and the OLE control file specified could not be found.

67 LoadLibrary on control file failed
68 GetProcAddress on control file failed
69 DllRegisterServer on control file failed
70 DllUnRegisterServer on control file failed
These errors all relate to the registration and de-registration of OLE controls. The error messages indicate
which part of the process failed. Often, these errors occur if you try to register 32-bit controls under Windows
3.x or if you try to register a control which is not a proper OLE control - this is when GetProcAddress fails
because it can't find the function in the control to register or unregister it.

EXIT command

Format
EXIT

Purpose
Terminates the processing of the current script file, returning control to the higher level script file which called
the current script

Parameters
None

Return Value
None

Comments
This command is similar to the RETURN statement found in many programming languages and is used to
terminate nested scripts

See Also
STOP

ExitWindows

Format
ExitWindows(numstate)

Purpose
Restarts Windows or reboots the machine

Parameters
A numeric which is either TRUE or 1 to reboot the machine or FALSE or 0 just to restart Windows

Return Value
The %ERROR% variable holds the return value of the standard Windows ExitWindows function ie 0 if any
applications fail to terminate otherwise there is no return.

Comments
WARNING: This function should be used with care since it can cause loss of data

Example
ExitWindows(TRUE)

Function Directory

Date/Time Functions
 GetDate Get the system date
 GetTime Get the system time
 GetFileDate Get file date
 GetFileTime Get file time
 SetFileDate Set file date
 SetFileTime Set file time

De-Install Functions
 AddDeInstall Add a line to a de-install script
 CloseDeInstall Close the de-install script
 OpenDeInstall Open a de-install script

Disk & Directory Functions
 Chdir Change current drive/directory
 CheckLabel Check disk label
 GetDiskSpace Get free disk space
 IsWriteable Check is disk/path writeable
 Mkdir Make a new directory
 Rmdir Remove a directory

File Related Functions
 AppendFile Append a string to a file
 ChangeConfig Changes CONFIG.SYS FILES/BUFFERS
 CheckExists Check if file exists
 Close Close a file
 ConfirmOverwrite Allows user to confirm a file overwrite
 CopyFile Copy file(s) from one location to another
 Delete Delete a file
 EndCopyFile Terminates the CopyFile/Progress dialog
 GetBackupName Get a unique backup file name
 GetFileAttr Get file attributes
 GetFileLength Get file length
 Open Open a file for reading or writing
 ReadLine Read a line from the input file
 Rename Rename a file to another name
 SetFileAttr Set file attributes
 SetGaugeText Sets text in CopyFile dialog
 UnCompress Un-compress a file, renaming
 UpdateGauge Update the progress gauge
 WriteLine Write a line to the output file

Miscellaneous Functions
 Skip Skip a number of lines in the script

Language Functions
 SetLanguage Set the system language

OLE Control Registration
 DllSelfRegister Self register an OLE control
 DllSelfUnRegister Self un-register an OLE control

Program Manager Functions
 DeleteGroup Delete a Program Manager group
 DeleteIcon Delete a Program Manager Icon
 MakeGroup Make/Select a Program Manager group
 MakeGroupFromFile Make a Program Manager group
 MakeIcon Make a Program Manager Icon
 Reload Reload Program Manager groups
 ShowGroup Display a Program Manager group

Registry Functions
 RegDeleteSetting Delete a setting from the Windows registry
 RegGetInt Get a numeric value from the Windows registry
 RegGetSetting Get a setting from the Windows registry
 Register Register a file in the shared file registry
 RegWriteInt Write a numeric value to the Windows registry
 RegWriteSetting Write a setting to the Windows registry
 UnRegister De-Register a file from the shared file registry

String Manipulation Functions
 AddChar Add a string to the end of another
 Instr Find one string in another
 LCase Convert string to lower case
 Left Get left n characters of a string
 Len Get length of string
 Mid Get a sub-string from a string
 Right Get the right n characters of a string
 UCase Convert a string to upper case

User Defined Object Functions
 AddListItem Add item(s) to a list control
 CentreDialog Centres a dialog on screen
 CreateBackdrop Create a backdrop object
 CreateControl Create a control in a user dialog
 CreateCueCard Create a cue card object
 CreateDialog Create a user-defined dialog object
 DestroyObject Destroy a user-defined object
 EndObject Mark end of object definition
 PositionDialog Position dialogs
 SetControlText Sets the text in a control
 SetFocus Set control focus in a user dialog
 ShowBackDrop Display background backdrop/bitmap
 ShowCueCard Display a cue card object

Windows Interface/API Functions
 AppendProfileString Append to an .INI file string
 DialogBox Use an inbuilt dialog
 ExitWindows Terminate Windows
 GetModuleInUse Check if Windows is using a file
 GetProfileString Get an .INI file string
 GetScreenHeight Get screen height in pixels
 GetScreenWidth Get screen width in pixels
 GetWinVer Get current version of Windows

 HideSetup Hide the Setup Program window
 HideWaitMessage Hide the ShowWaitMessage
 MessageBox Pop up a message box
 Release Release control to Windows
 ShowWaitMessage Show a message and carry on
 Wait Wait for a window to appear/disappear
 WinExec Execute another program
 WriteProfileString Write an .INI file string

GetBackupName

Format
GetBackupName("filename.ext", %variable%)

Purpose
Given a file name, creates a unique backup file name from it

Parameters
• String name of the file
• Variable to store the result in

Return Value
None

Comments
This function is useful when creating backup copies of files. Given a file name, it evaluates a unique file name
which is guaranteed not to already exist.
The parameter file name may optionally contain a drive letter, path specification and file extension, although
the later will always be replaced upon returning.
The returned file name will always contain any drive/path specifications which were specified in the parameter
file name.
The example below best demonstrates how the function operates.

Example
GetBackupName("C:\AUTOEXEC.BAT", %File%)

The above example would place the file name 'C:\AUTOEXEC.001' in the %File% variable. If this file already
exists, then 'C:\AUTOEXEC.002' would be returned and so on.

GetDate

Format
GetDate(%varname%)
GetDate(%varname%, format)

Purpose
Gets the system date into a variable

Parameters
• Variable to store the result in
• Optional date format required which may be:

0 For dd/mm/yy
1 For yy/mm/dd

Return Value
None

Comments
The date format specifier is optional, the default being 0.
If an invalid date format is specified a run time error will occur

Example
GetDate(%Date%) // 21/10/93
GetDate(%Date%, 1) // 93/10/21

See Also
GetTime

GetDiskSpace

Format
GetDiskSpace("drive letter")

Purpose
Retrieves the amount of space available on a disk.

Parameters
• String containing the letter of the drive to be chacked.

The text case is not important

Return Value
The %ERROR% variable contains the number of free bytes on the specified disk

Comments

Example
GetDiskSpace("A:")

GetFileAttr

Format
GetFileAttr("filename", %rdonly%, %hidden%, %system%, %archive%)

Purpose
Gets the attributes of a file into variables

Parameters
• String name of file to get the attributes of
• Variable to store the read only attribute in
• Variable to store the hidden attribute in
• Variable to store the system attribute in
• Variable to store the archive attribute in

Return Value
The %ERROR% variable holds the error status:

• TRUE Error - file not found
• FALSE Success

Comments
The file name must NOT contain wildcards

Example
GetFileAttr("C:\AUTOEXEC.BAT", %rdonly%, %hidden%, %system%, %archive%)

GetFileDate

Format
GetFileDate("filename", %varname%)
GetFileDate("filename", %varname%, format)

Purpose
Gets the date of a file into a variable

Parameters
• String name of file to get the date of
• Variable to store the result in
• Optional date format required which may be:

0 For dd/mm/yy
1 For yy/mm/dd

Return Value
The %ERROR% variable hold the error status:

• TRUE Error - file not found
• FALSE Success

Comments
The date format specifier is optional, the default being 0.
If an invalid date format is specified a run time error will occur

Example
GetFileDate("C:\AUTOEXEC.BAT", %Date%) // 29/03/92
GetFileDate("C:\AUTOEXEC.BAT", %Date%, 1) // 92/03/29

See Also
GetFileTime

GetFileLength

Format
GetFileLength("filename")

Purpose
Gets the length of a file

Parameters
None

Return Value
The %ERROR% variable contains the length of the file if successful or -1 if an error occured

Comments

Example
GetFileLength("C:\AUTOEXEC.BAT")

GetFileTime

Format
GetFileTime("filename", %varname%)

Purpose
Gets the time of a file into a variable

Parameters
• String name of file to get the time of
• Variable to store the result in

Return Value
The %ERROR% variable hold the error status:

• TRUE Error - file not found
• FALSE Success

Comments
The file name must NOT contain wildcards

Example
GetFileTime("C:\AUTOEXEC.BAT", %Time%)

See Also
GetFileDate

GetScreenHeight

Format
GetScreenHeight(%varname%)

Purpose
Obtains the physical height of the screen in pixels. The function is intended to be used with the
ShowBackDrop() function in order to determine the screen size and therefore, bitmap to display

Parameters
• Variable to store the screen height in

Return Value
None

Example
GetScreenHeight(%Height%)

See Also
GetScreenWidth, ShowBackDrop

GetModuleInUse

Format
GetModuleInUse("filename")

Purpose
Determines whether a module is in use by Windows ie it is already running. This can be used to prevent
installation of an executable which is being presently run by Windows

Parameters
• String name of file to be checked

Return Value
The %ERROR% variable holds the state:

• TRUE Module is in use
• FALSE Module is not in use

Comments
It is worth using this function within an installation script since the CopyFile() function will abort with an error
message and terminate an installation script if an attempt is made to overwrite a file which is in use. This
function enables the programmer to retain control over this situation

Example
GetModuleInUse("progman.exe")

GetPrivateProfileString
GetProfileString

Format
GetProfileString("section" , "entry", "default",

"file name", %varname%)

Purpose
Reads a string from a Windows .INI file into a variable

Parameters
• String [Section] of .INI file to read from
• String entry within the section to read
• String default if entry not found
• String name of .INI file to read from
• String name of variable to place the string read

Return Value
None

Comments
Along with the standard windows function, if no path is specified in the .INI file name, reading defaults to the
Windows directory.
The GetPrivateProfileString function is only supplied for compatibility with earlier versions of Setup. You
should use the GetProfileString function.

Example
GetProfileString("Windows", "Spooler", "yes", "win.ini", %spooler%)

Notes
Please note that some of the Windows .INI component files have duplicate 'entry' names. The SYSTEM.INI
[386Enh] section is a good example of this where there are multiple Device= entries.
The Setup Script language does not support reading and writing of such entries: it only supports unique entry
names. Indeed, the Windows API functions which the script language functions map onto do not support
duplicate entry names either. To handle such entries some script code could be written which enters a loop to
read every line of the .INI file, writing them to a temporary file and making adjustments at the same time. The
resulting temporary file would then be renamed or copied over the original .INI file.

See Also
WriteProfileString

GetTime

Format
GetTime(%varname%)

Purpose
Gets the system time into a variable

Parameters
• Variable to store the result in

Return Value
None

Comments
The time is in the format hh:mm:ss

Example
GetTime(%Time%)

See Also
GetDate

GetScreenWidth

Format
GetScreenWidth(%varname%)

Purpose
Obtains the physical width of the screen in pixels. The function is intended to be used with the
ShowBackDrop() function in order to determine the screen size and therefore, bitmap to display

Parameters
• Variable to store the screen width in

Return Value
None

Example
GetScreenWidth(%Width%)

See Also
GetScreenHeight, ShowBackDrop

GOTO command

Format
GOTO :label

Purpose
Causes a branch of execution of the script file to another line within the file. That line must start with the same
label name preceeded with a colon :

Parameters
• A label

Return Value
None

Comments
A label cannot be a variable name.
A run time error will occur if the parameter label cannot be found

Example
GOTO :END
.
.
:END

See Also
Standards and Notations

HideSetup

Format
HideSetup()

Purpose
Closes down the Setup.exe or Install.exe startup program.

Parameters
None

Return Value
None

Comments
When an installation is run via the Setup.exe or Install.exe programs, they copy the necessary files to run an
installation to the hard disk windows temporary directory (Normally \WINDOWS\TEMP).
The Setup.exe and Install.exe programs then pass control to the INSTxx.EXE program which is the script
interpreter. INSTxx.EXE performs a number of initialising tasks at the begining of a script such as copying
object (Backdrop, Cue Card and Dialog) bitmaps from the diskette. During this time the user only sees the
'Starting..Setup...' dialog.
Once the initialisation is complete, the script needs to close down the Setup.exe program and this is done by
the HideSetup() function.
If you are using INSTxx.EXE as a simple script interpreter, you will never need to use HideSetup() as it is only
applicable to installations where INSTxx.EXE has been started by Setup.exe or Install.exe.
If HideSetup() is removed from an auto-created script, the Setup.exe dialog will never disappear.
If the Setup.exe or Install.exe program is not running, this function has no effect.

HideWaitMessage

Format
HideWaitMessage()

Purpose
Hides the wait message currently displayed by the ShowWaitMessage function.

Parameters
None

Return Value
None

Comments
Calling this function when there is no wait message currently being displayed has no effect.

Example
HideWaitMessage()

See Also
ShowWaitMessage

IF command

Format
IF <value> [<logical operator>]<comparison operator> <value> <statement>

Purpose
Performs a comparison between two values

Parameters
There are four parameters to this command:

• A numeric/string value
• An optional logical operator
• A comparison operator
• A second numeric/string value

Return Value
None

Comments
Valid logical operators are:

• AND
• OR
• XOR

Valid comparison operators are:

• == Equals
• != Not equals
• > Greater than
• < Less than
• >= Greater than or equal to
• <= Less than or equal to

Since Setup does not have a concept of variable 'types' the IF command follows certain rules depending on the
comparison being performed.
If the first parameter value is a numeric ie numeric digits or a variable name, then a numeric comparison is
performed with the second value.
If the first value is a string ie text enclosed in quotes or text enclosing a variable name, then a string
comparison is performed.
If the 'type' of the second parameter does not conform with the first parameter then a run time error will occur.

Any Setup command may follow the comparison and this will be executed if the result of the comparison is
true.

Example
Numeric comparisons
IF 1 < 2 GOTO :END
IF %NUMBER% == 10 GOTO :TEN
IF %ERROR% == IDBACK GOTO :BACK
IF %ERROR% == TRUE GOTO :END

String comparisons
IF "TEXT" == "TEST" GOTO :SAME
IF "%INSTALLPATH%" != "C:\" GOTO :END

Logical Comparison
Set %Value% = 4
IF %Value% AND 4 != 0 MessageBox("Got it", "Test", MB_OK, 0)

See Also
Standards and Notations

Instr

Format
Instr(start, "SearchString", "FindString")

Purpose
Used in conjunction with the SET command, this function finds the position of one string within another string

Parameters
• Numeric position to start searching from (first character is 1)
• String to search
• String to search for

Return Value
The return value is the position within the string where the requested string was found. It is 0 if the string was
not found or greater than 0 if it was found.
The return value is a numeric and is assigned to the variable in the SET statement

Example
Set %Var% = Instr(1, "Test String", "st") // %Var% holds 3

IsWriteable

Format
IsWriteable("directory name")
IsWriteable("drive spec")

Purpose
Checks to see if a drive or directory can be written to

Parameters
• Name of the directory to check

or
• Drive specification to check

Return Value
The %ERROR% variable holds the error status:

• TRUE Drive/directory is writeable
• FALSE Drive/directory is not writeable

Example
IsWriteable("C:\ABC")
IsWriteable("H:")

LCase

Format
LCase("String")

Purpose
Used in conjunction with the SET command, this function converts a string to lower case

Parameters
• String to convert

Return Value
The return value is a string and is assigned to the variable in the SET statement

Example
Set %Var% = LCase("Test String") // %Var% holds 'test string'

See Also
UCase

Left

Format
Left("String", numchars)

Purpose
Used in conjunction with the SET command, this function extracts the number of characters specified from the
start of a string

Parameters
• String to extract from
• Numeric number of characters to extract

Return Value
The return value is a string and is assigned to the variable in the SET statement

Example
Set %Var% = Left("Test String", 3) // %Var% holds 'Tes'

See Also
Mid, Right

Len

Format
Len("String")

Purpose
Used in conjunction with the SET command, this function finds the length of a string in characters

Parameters
• String to obtain the length of

Return Value
The return value is a numeric and is assigned to the variable in the SET statement

Example
Set %Var% = Len("Test String") // %Var% holds 11

MakeGroup

Format
MakeGroup("group name")
MakeGroup("group name", "group file")

Purpose
Creates a program group on Windows Program Manager

Parameters
• String name of group to be created or selected
• String name of group file to be created for the group

Return Value
None

Comments
The group name is the name which appears in the caption of the group when it is displayed by Program
Manager.
The group file name may include drive/path specifiers.
Note that creating a group which already exists does not create a new group, instead it makes the existing
group the active group in Program Manager. Therefore, this command can be used for selecting groups as well
as creating them.

Example
MakeGroup("TEST")
MakeGroup("TEST", "FILE.GRP")

See Also
DeleteGroup

MakeGroupFromFile

Format
MakeGroupFromFile("group file name")

Purpose
Creates a program group on Windows Program Manager from an existing group file

Parameters
• String name of group file to be installed

Return Value
None

Comments
The group file name may include drive/path specifiers.
Note that creating a group which already exists does not create a new group.

Example
MakeGroupFromFile("C:\ABC\TEST.GRP")

See Also
MakeGroup, DeleteGroup

MakeIcon

Format
MakeIcon("icon text", "file name", "parameters", "icon file", iconIndex, "default directory")

Purpose
Creates an icon within the currently selected program manager group

Parameters
• String name of icon to create
• String containing command line to run the icon
• String containing command line parameters
• String containing file name (.exe or .dll) containing the icon to use
• Number of the icon in the .exe or .dll to use (first is 0)
• String containing default directory for program

Return Value
None

Comments
The icon text appears below the icon in Program Manager.
The icon text is used by all program manager functions to identify an icon.
Note that it is not possible to create duplicate icons with the same name - the existing icon is automatically
deleted before the new one is created. The matching is performed using the icon text.
Only the first two parameters of this function are actually required, the rest defaulting if not supplied, however
if you wish to set the default path for example, you can do so by supplying null parameters: see the examples
below.
Icons are held in .exe and .dll files and are zero subscripted: The first icon is zero, the second is one and so on.

Example
// The basic default use of the function
// The icon file defaults to notepad.exe and the index to zero
MakeIcon("Editor", "notepad.exe")

// Make an icon but use the default icon (0) from cardfile.exe
MakeIcon("Editor", "notepad.exe", "", "cardfile.exe")

// Make an icon but use the third icon in progman.exe
MakeIcon("Editor", "notepad.exe", "", "progman.exe", 2)

// Make an icon, setting the icon and working directory
MakeIcon("Editor", "notepad.exe", "", "progman.exe", 2, "C:\MYDIR")

// Make an icon using the third icon and setting the working directory
MakeIcon("Program Manager", "progman.exe", "", "", 2, "C:\MYDIR")

// Make an icon, setting the working directory, but using the default icon
MakeIcon("Editor", "notepad.exe", "", "", -1, "C:\MYDIR")

See Also
DeleteIcon

Mid

Format
Mid("String", start, length)

Purpose
Used in conjunction with the SET command, this function extract a substring from another string

Parameters
• String to obtain the substring from
• Numeric position to start extracting from (first character is 1)
• Numeric number of characters to extract

Return Value
The return value is a string and is assigned to the variable in the SET statement

Example
Set %Var% = Mid("Test String", 2, 5) // %Var% holds 'est S'

See Also
Left, Right

Mkdir

Format
MkDir("directory name")

Purpose
Creates a new directory on a disk. This function now supports a multi-level directory create

Parameters
• String name of new directory to create

Return Value
The %ERROR% variable hold the error status:

• TRUE Error - directory exists or could not be created
• FALSE Success

Example
// The following creates C:\TEST
MkDir("C:\TEST")

// The following creates C:\TEST and C:\TEST\MYDIR
MkDir("C:\TEST\MYDIR")

See Also
Rmdir, Chdir

MessageBox

Format
MessageBox("message", "caption", buttons, icon)

Purpose
Provides the ability to pop-up a standard Windows message box

Parameters
• String message to be displayed
• String caption of message box
• Button setting:

MB_OKCANCEL
MB_OK
MB_ABORTRETRYIGNORE
MB_YESNOCANCEL
MB_YESNO
MB_RETRYCANCEL

• Icon required:
0 - no icon
MB_ICONQUESTION
MB_ICONEXCLAMATION
MB_ICONINFORMATION
MB_ICONSTOP

Return Value
The %ERROR% variable holds the button pressed:

• IDOK
• IDCANCEL
• IDABORT
• IDRETRY
• IDIGNORE
• IDYES
• IDNO
• IDBACK

Comments
By convention you should use message boxes and dialog boxes to ask the user simple questions and give them
the ability to perform selective or special installations.
Always use a message box to ask the user to confirm loss of data!

Example
MessageBox("A test message", "Test", MB_OK, MB_ICONQUESTION)

See Also
DialogBox, Predefined Constants

OLE Control Registration - Overview

Self-Registering OLE Executables
Some OLE controls are written as executable (.EXE) files which can self-register themselves, normally by
running the executable with the /REGSERVER parameter. To have a self-registering executable register itself,
use the WinExec function to execute it:

WinExec("C:\MYDIR\MYSERVER.EXE /REGSERVER", 0, 1)

Controls registered with /REGSERVER can be unregistered using the /UNREGSERVER parameter.

Self-Registering OLE DLLs
Other OLE controls such as .OCX files cannot be run as executables and therefore must be registered using the
DllSelfRegister function and unregistered using the DllSelfUnRegister function.

.REG Files
It is also possible to register OLE controls using a .REG file. Typically, you would create a .REG file
(Documentation can be obtained from Microsoft books, the SDK help (See 'Registration Database') and many
other sources) and write some script:

WinExec("REGEDIT.EXE /s %InstallPath%MYFILE.REG", 0, 1)
IF %ERROR% < 32 MessageBox("Error: WinExec return error code %ERROR% and was unable to register
the .REG file.", "%Caption%", MB_OK, MB_ICONEXCLAMATION)

Other Methods
OLE DLL controls can also be registered using REGSVR.EXE and REGSVR32.EXE which are both supplied
with Visual C++ and probably many other development tools.

REGSVR takes the following parameters:

/u Unregister
/s Silent mode
Filename

REGSVR [/u][/s] filename.ocx

OpenDeInstall

Format
OpenDeInstall("filename.scr")

Purpose
Opens a script file to maintain as a de-install script file.

Parameters
• String name of script file to open.

Return Value
None

Comments
If the script file does not exist, it is automatically created. A run-time error occurs if the script cannot be
created.

When Setup Builder installs a piece of software and the de-install option has been selected, during installation,
it creates a de-install script. This is a script which defines the activities which
need to be performed to de-install the software being installed.
Because Setup Builder supports the ability to allow the user to re-install an item of software, and more
importantly, it supports the ability to allow the user to install optional components and then allow the user to
install more components later on, a de-install procedure becomes a cumulative task: the more components
installed, the more needs to be added to the de-install. As a result, during an installation, the install procedure
needs to insert script code into the de-install procedure.
The OpenDeInstall/AddDeInstall/CloseDeInstall functions enable such a de-install procedure to be maintained.
Typically, the de-install script is divided up into a number of sections:

$STARTUP$
Script required at the startup of the de-install procedure.

$UNPROTECT$
Script to unprotect write-protected files - SetFileAttr.

$FILES$
Files to Delete or UnRegister.

$PMGROUP$
Program Manager groups to be removed.

$USERSCRIPT$
User-defined de-installation script.

$DIRECTORIES$
Directories to be removed - RmDir.

$CLEANUP$
Tidy-up script at the end of the de-installation procedure.

Once opened, the AddDeInstall function is used to add lines to the script file. These lines MUST be standard
script language commands.
Once an installation is completed, the CloseDeInstall function closes the de-install script.

De-install scripts are automatically placed in the WINDOWS\GPPSOFT directory on your hard disk where
WINDOWS represents the directory of where you have installed Windows.

See Also
AddDeInstall, CloseDeInstall

Open

Format
Open("filename", stream, mode)

Purpose
Opens a file on a disk for reading or writing

Parameters
• String name of the file to open
• Stream number to open the file in (1 - 10)
• File mode which may be:

READ to open for reading
WRITE to open for writing
APPEND to open for append (add to the end of the file)

Return Value
The %ERROR% variable holds the error status:

• TRUE Error - failed to open file
• FALSE Success

Comments
The file name must be a standard DOS format name which may contain drive and/or path specifications but
not wildcard characters.
A file may be opened for reading or writing, but not both.
When a file is opened, it is opened in a stream. A stream number is any value from 1 to 10. This means that up
to 10 files may be opened at a time. The file stream number is then used to identify the file for reading, writing
and closing.
An error will occur if you attempt to open more than one file in a stream.
Note that if you use Setup Builder to automatically build an installation suite, stream 10 is used by the 'de-
install' facility (only if you selected to use the de-install facility), so you should not use it in any 'user-script'
that you may add to the setup procedure

Example
This example reads the CONFIG.SYS file and writes it out to TEMP.DAT having changed the FILES entry to
100

Open("C:\CONFIG.SYS", 1, READ)
IF %ERROR% == TRUE GOTO :OPENERROR

Open("C:\TEMP.DAT", 2, WRITE)
:NEXTLINE
ReadLine(1, %Buffer%)
IF %ERROR% == EOF GOTO :EOF

SET %Ptr% = Instr(1, %Buffer%, "FILES=")
IF %Ptr% == 0 GOTO :NOTFOUND

Set %Buffer% = "FILES=100"

:NOTFOUND
WriteLine(2, %Buffer%)

GOTO :NEXTLINE

:EOF
Close(1)
Close(2)

.

.

:OPENERROR

See Also
Close

Overriding In-Built Dialogs

The INST.EXE Setup script interpreter supports the ability to create user-defined dialogs such that scripts can
be written with user-tailored dialogs. Up to 10 dialogs may be created and they may contain up to 50 controls
each.
User-defined dialogs are created as 'templates' which have a unique name determined by the developer of the
install procedure. The script interpreter also has a large number of predefined dialog templates which are listed
in the documentation of the DialogBox function.

Often, the developer may want to replace one or more of the standard dialogs in the standard install procedure
by overriding with some user-defined dialogs. This topic discusses how it can be done.

Please refer to the DialogBox function for details on the dialog you wish to override.
All of the standard dialogs have controls which have numeric IDs as listed in the DialogBox function help.
When creating a user defined dialog you must place the same controls on your dialog with the same numeric
IDs as those in the standard dialog your are overriding. It is up to you how the controls are positioned and what
size they are.
The following show some example script of how the PUSHB2 dialog would be overridden. The example was
actually used in older versions of the Setup Builder product install procedure.

CreateDialog("PUSHB2","%Caption%", 40, 40, 260, 145)
CreateControl("groupbox","",-1,6,4,247,110,0)
CreateControl("icon","setup",-1,15,20,0,0,0)
CreateControl("text","Please make a selection from the following options:",-1,60,30,170,24,0)
CreateControl("button","&Install,IDOK,38,56,40,14,1)
CreateControl("text","Install the %Application% software",-1,100,58,145,8,0)
CreateControl("button","&De-Insall",IDBUTTON2,38,80,40,14,1)
CreateControl("text","Un-Install the %Application% software",-1,100,82,145,8,0)
CreateControl("button","Cancel",IDCANCEL,6,126,40,14,0)
CentreDialog()
SetFocus(IDOK)

All three buttons have the same IDs as those in the PUSHB2 dialog. Although not used in the example, the text
controls may also contain text strings which have variable names embedded which are the same as those used
by the standard dialog. In this way, the user defined dialog becomes an exact replacement for the standard
dialog.

Note that the ASKPATH dialog performs some checking to see if the directory name entered was valid and
creates it if it is. Similarly, the LICENSING dialog writes the two fields to the application .INI file.
It is therefore not possible to create a direct replacment for the ASKPATH dialog without some extra
supporting code. Likewise, a replacement for the LICENSING dialog would also require supporting code to
handle the string values entered in the edit fields.

See Also
User Defined Dialogs

PositionDialog

Format
PositionDialog(n, n)

Purpose
Affects the horizontal and vertical coordinates used by all future in-built dialogs.

Parameters
• Numeric X coordinate of future dialogs
• Numeric Y coordinate of future dialogs

Return Value
None

Comments
This function is used both by User Defined Dialogs and by the in-built dialogs.

Any combination of the valid parameters is allowed such that you can place a dialog centrally on screen in the
horizontal direction at the top of the screen for example.

PositionDialog also operates in conjunction with the CentreDialog function. If dialog centering has been set,
the values set by PositionDialog are overridden as CentreDialog takes priority.

To switch positioning back to the default, call:
PositionDialog(-1, -1)

Predefined/DOS Environment Variables

CAPTION
This variable holds the text which is used as the caption for all of the predefined dialogs. It defaults to 'Setup'.

CURRENTDIRECTORY
This variable holds the full drive and path name of the current directory, complete with a trailing backslash
character:
eg: C:\MAIN\TEST\

CURRENTDRIVE
This variable holds the current drive letter:
eg: A:
Note that along with CURRENTDIRECTORY, this variable is automatically updated when the ChDir()
function is used.

ERROR
This variable is the 'accumulator' for return values. All functions which return a value set this variable. The
contents of this variable are numeric and may be any positive number. For example a call to MessageBox()
will place the value of IDOK (1) or IDCANCEL (2) in the ERROR variable whereas GetDiskSpace() will
place the number of bytes free on the specified disk in the ERROR variable.

INSTALLPATH
This variable is used by the AskPath dialog and should be used as the target path for any copying

INSTALLDRIVE
This variable holds the drive letter portion of the INSTALLPATH variable.

PROGRAMFILE
This variable holds the fully qualified file name (including drive and path name) of the interpreter program.

SCRIPTFILE
This variable holds the fully qualified file name of the script file currently being executed.

SYSTEMDIRECTORY
This variable contains the drive and path of the Windows System directory which is normally C:\WINDOWS\
SYSTEM\

WINDOWSDIRECTORY
This variable contains the drive and path of the Windows directory which is normally C:\WINDOWS\
This variable is normally used when a .INI file is to be copied / installed into the Windows directory during a
Setup procedure.

NOTE:
The predefined variables are treated in exactly the same way as any user variable and can therefore be
'nullified' to free up the variable space, however, some will automatically recreate themselves when certain
commands or functions are used.
If required, they can be assigned values although this defeats the object of some of them displaying the current
system state. It is most likely that you might wish to do this with CAPTION and ERROR.

It is possible to obtain DOS environment variables by refering to them by name as though they were normal
script language variables. The following example will display the current PATH=

MessageBox("The path is: %Path%", "Test", MB_OK, 0)

Please note that the script language can only read DOS variables and not set them. If you attempt to perform a
SET, you will create a script language variable which will overide the DOS variable and therefore no longer
reflect the DOS environment variable. It is therefore not recommended that you create script variables with the
same name a DOS environment variables if you wish to obtain the DOS environment variable value.

See Also: Standards and Notations, DialogBox

ReadLine

Format
ReadLine(stream, %Variable%)

Purpose
Reads a line from the specified file stream

Parameters
• The numeric stream of the file (1-10)
• The variable into which to read the line

Return Value
The %ERROR% variable holds the error status:

• 0 Success
• 2 End of file reached

Comments
The maximum length of line which can be read is 254 characters.
This function will only handle ASCII text files with lines ending in CR/LF
To be able to read from a file, the file must have previously been opened in READ mode using the Open
function. The file must have been opened with the same stream number as that passed to this function.
An error will occur if you try to read from a stream which has not been opened in READ mode

Example
This example reads the CONFIG.SYS file and writes it out to TEMP.DAT having changed the FILES entry to
100

Open("C:\CONFIG.SYS", 1, READ)
IF %ERROR% == TRUE GOTO :OPENERROR

Open("C:\TEMP.DAT", 2, WRITE)
:NEXTLINE
ReadLine(1, %Buffer%)
IF %ERROR% == EOF GOTO :EOF

SET %Ptr% = Instr(1, %Buffer%, "FILES=")
IF %Ptr% == 0 GOTO :NOTFOUND

Set %Buffer% = "FILES=100"

:NOTFOUND
WriteLine(2, %Buffer%)
GOTO :NEXTLINE

:EOF
Close(1)
Close(2)

.

.

:OPENERROR

See Also
Close, Open, WriteLine

RegDeleteSetting

Format
RegDeleteSetting(nKey, "SubKey", "Entry")

Purpose
Deletes a value from the Windows Registry.

Parameters
• Key number

1 HKEY_CLASSES_ROOT (Win 3.1 only supports this)
2 HKEY_CURRENT_USER
3 HKEY_LOCAL_MACHINE
4 HKEY_USERS
5 HKEY_PERFORMANCE_DATA (NT only)
6 HKEY_CURRENT_CONFIG
7 HKEY_DYN_DATA

• Sub key string to delete the value from
• Entry within the sub key to delete

Return Value
None

Comments
This function works under both Windows 3.1 and Windows NT/95 and deletes the value from the appropriate
registry depending on which operating system is currently running.
Note that under Windows 3.1, only the HKEY_CLASSES_ROOT key is valid (all other keys are defaulted to
HKEY_CLASSES_ROOT) whereas under Windows NT/95 all of the key values are valid.

Example
// This example creates an entry, then deletes it
RegWriteSetting(1, "SetupBuilder\Options", "ProjectName", "TestProject.SPJ")
RegDeleteSetting(1, "SetupBuilder\Options", "ProjectName")

// This example creates a sub key section and then deletes all entries under it
RegWriteSetting(1, "SetupBuilder\Options", "ProjectName", "TestProject.SPJ")
RegDeleteSetting(1, "SetupBuilder", "")

Notes
If the subkey parameter is provided, but the entry is supplied as blank, the entire registry under and including
the subkey will be deleted using a hierarchical delete.
If the entry parameter is provided as well as the subkey, only that entry will be removed from the registry.
This functionality is consistent between both the 16 and 32-bit versions of the interpreter.

See Also
Windows Registry, RegGetSetting, RegWriteSetting

RegGetSetting

Format
RegGetSetting(nKey, "SubKey", "Entry", "Default", %Variable%)

Purpose
Reads a string value from the Windows Registry.

Parameters
• Key number

1 HKEY_CLASSES_ROOT (Win 3.1 only supports this)
2 HKEY_CURRENT_USER
3 HKEY_LOCAL_MACHINE
4 HKEY_USERS
5 HKEY_PERFORMANCE_DATA (NT only)
6 HKEY_CURRENT_CONFIG
7 HKEY_DYN_DATA

• Sub key string to retrieve the value from
• Entry within the sub key to read
• The default value if the entry is not found
• The variable to place the result in

Return Value
None

Comments
This function works under both Windows 3.1 and Windows NT/95 and retrieves the value from the appropriate
registry depending on which operating system is currently running.
Note that under Windows 3.1, only the HKEY_CLASSES_ROOT key is valid (all other keys are defaulted to
HKEY_CLASSES_ROOT) whereas under Windows NT/95 all of the key values are valid.

Example
RegGetSetting(1, "SetupBuilder\Options", "ProjectName", "", %Value%)

See Also
Windows Registry, RegWriteSetting, RegDeleteSetting

RegGetInt

Format
RegGetInt(nKey, "SubKey", "Entry", nDefault, %Variable%)

Purpose
Reads a long integer (32 bit) value from the Windows Registry.

Parameters
• Key number

1 HKEY_CLASSES_ROOT (Win 3.1 only supports this)
2 HKEY_CURRENT_USER
3 HKEY_LOCAL_MACHINE
4 HKEY_USERS
5 HKEY_PERFORMANCE_DATA (NT only)
6 HKEY_CURRENT_CONFIG
7 HKEY_DYN_DATA

• Sub key string to retrieve the value from
• Entry within the sub key to read
• The default value to use if the entry is not found
• The variable to place the result in

Return Value
None

Comments
This function works under both Windows 3.1 and Windows NT/95 and retrieves the value from the appropriate
registry depending on which operating system is currently running.
Note that under Windows 3.1, only the HKEY_CLASSES_ROOT key is valid (all other keys are defaulted to
HKEY_CLASSES_ROOT) whereas under Windows NT/95 all of the key values are valid.
In the 16 bit version of the interpreter, this function always reads a string value from the registry because the
Windows 3.1 registry does not support numeric entries. Therefore, under Windows 3.1, this function has the
same effect as the RegGetSetting function.

Example
RegGetInt(1, "SetupBuilder\Options", "Number", 0, %Value%)

See Also
Windows Registry, RegWriteInt, RegDeleteSetting

Register

Format
Register("filename.ext")

Purpose
Adds a file to the shared file registry

Parameters
• String fully qualified file name of the file being added

Return Value
The %ERROR% variable holds the number of applications sharing the file after the application currently being
installed has registered itself as using the file.

Comments
Often during an installation of some software, it is common to place files in the \WINDOWS or \WINDOWS\
SYSTEM directory. Sometimes, the files placed in these directories are used by more than one application, for
example, .DLL files. At some point, it is likely that one or more of the applications sharing these common files
will be de-installed, causing a potential problem with files that have been installed for shared use, especially if
the shared files are deleted.
To resolve the problem of shared files being de-installed, Setup Builder supports a 'shared file registry' system
under Windows 3.x which utilises the REGISTRY.INI file and under Windows 95/NT it supports the proper
shared file section in the registry.
In simple terms, the shared file registry is just a list of files with a count of the number of applications using
them. As applications are installed, the counts are increased and when applications are de-installed, the counts
are decreased. When counts reach zero, files are deleted.
The registry itself is simply the REGISTRY.INI file in your \WINDOWS directory under Windows 3.x or the
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\SharedDlls section of the
Windows 95/NT registry. The shared file registry contains a list of all the files which have been registered as
shared, together with a count of the number of applications which are currently installed which use the files.
When a file is registered, it may already exist in the registry (another application is already using it), in which
case its count is simply increased by one. If it isn't already registered, the file is added to the registry with a
count of 1. Before a file is registered, the Register function checks to see if the file exists. In this way, files
which have already been installed by other applications which are not in the registry can be accounted for in
the registry, so it is possible that if you Register a file, its count may start at 2 if the file already existed.
To integrate with this facility, Setup Builder creates script code which registers a file before it is actually
installed/copied.
The Setup Builder de-install facility integrates with the shared file registry.
When a piece of software is de-installed, files are usually simply deleted, however, files which have been
registered in the registry must only be deleted if their share count reaches zero. Therefore, shared files must be
removed with the UnRegister function and not the Delete function. UnRegister retrieves the share count for a
file and decreases it, writing it back to the registry. The file is not deleted until the share count reaches zero (ie
all applications using the file have been de-installed) and then the registry entry for the file is removed - the
file is no longer registered as being shared.
The registry functions do not support wild card file names.
The 16-bit version of the interpreter does not support the Windows 95/NT shared file registry even if it is run
under these operating systems because 16-bit applications do not have access to this section of the Windows
95/NT registry. If you require a 16-bit installation to use the proper Windows 95/NT shared file registry then
you should build your installation as a dual 16/32 bit installation by providing the run-time support for 16 and
32 bit installs. This is done in Setup Builder's Project Attributes dialog.

Example

Register("C:\WINDOWS\SYSTEM\CTL3DV2.DLL")
MessageBox("%ERROR% applications are now sharing this file.", "Test", MB_OK, 0)
// Install the file in/overwrite check etc
STOP

// De-Install
UnRegister("C:\WINDOWS\SYSTEM\CTL3DV2.DLL")
MessageBox("%ERROR% applications are now sharing this file.", "Test", MB_OK, 0)

See Also
UnRegister

Windows Registry - Overview

Microsoft Windows version 3.1, Windows NT and Windows 95 all support a 'registry' feature known as the
'Windows Registry'. The registry was primarily used in Windows 3.1 for the purpose of registering OLE
control information. Under Windows 95/NT the registry has been extended to the point where it now provides
a mechanism for replacing initialisation (.INI) files found in previous versions of Windows.

All versions of Windows are supplied with a 'registry editor' which enables you to view and maintain the
registry.
REGEDIT.EXE is the registry editor under Windows 3.1 and Windows 95. The Windows 3.1 version of
REGEDIT.EXE should be run with /v as a parameter to display the registry in a hierarchical format. Windows
NT supports both the Windows 3.1 '16 bit' registry (maintained with REGEDIT.EXE) and the '32 bit' registry
(maintained with REGEDT32.EXE).

Setup Builder supports the Windows registry in two different ways:

1) REGEDIT.EXE/REGEDT32.EXE can be used to merge a registration file with the Windows registry. To do
this, you need to create a .REG file which contains the entries to be merged into the registry:

REGEDIT

HKEY_CLASSES_ROOT\PBrush = Paintbrush Picture
HKEY_CLASSES_ROOT\.bmp = PBrush
HKEY_CLASSES_ROOT\.msp = PBrush
HKEY_CLASSES_ROOT\.pcx = PBrush
HKEY_CLASSES_ROOT\PBrush\shell\print\command = pbrush.exe /p %1
HKEY_CLASSES_ROOT\PBrush\shell\open\command = pbrush.exe %1
HKEY_CLASSES_ROOT\PBrush\protocol\StdFileEditing\verb\0 = Edit
HKEY_CLASSES_ROOT\PBrush\protocol\StdFileEditing\server = pbrush.exe

To merge the .REG file with registry, run REGEDIT.EXE:

REGEDIT.EXE /s MYFILE.REG

This will place all the entries in the .REG file into the registry.
In Setup Builder, registration would most likely be performed in the 'Post File Copying' script section and
would be done using script similar to the following:

WinExec("regedit.exe /s %InstallPath%MYFILE.REG")

Note that the .REG file should be installed as though it were a normal installation file.

It is recommended that this technique should not be used under Windows 95 and NT.

2) The Interpreter supports several functions which can directly read, write and delete entries in the registry:

• RegDeleteSetting
• RegGetSetting
• RegGetInt
• RegWriteSetting
• RegWriteInt

These functions make maintaining the registry as easy as maintaining initialisation (.INI) files.

Setup Builder is supplied with both a 16-bit and 32-bit version of the interpreter. The 16-bit version can be run
under all versions of Windows whereas the 32 bit version can only run under Windows 95 and NT. The 32 bit
version has not been tested under Win32s. The 16-bit version operates differently depending on which version
of Windows is running.
When run under Windows 3.x, the registry functions all access the registry in the standard Windows 3.x way.
When running under Windows 95, the registry functions write entries to the standard Windows 95 registry, but
they can only create 'sub-folders' and not individual entries as the 32-bit interpreter does. This is because the
16-bit API of Windows 3.1 only supports 'sub-folders' in the registry.
When running under Windows NT, the registry functions always write to the '16 bit' registry. The Windows NT
16 bit registry is exactly the same as the Windows 3.1 registry.
The 32-bit version of the interpreter supports the Windows 95/NT registry in full.

Registry Sections
The Windows registry is divided up into a number of sections, similar to directories. Different versions of
Windows are supported in different ways by the Setup Script Interpreter. The 32-bit version of the interpreter
supports the registry in full, whereas the 16-bit version only supports the 16-bit implementation of the registry
under Windows 95 and Windows NT. The following table shows the registry support for each version of
Windows by the 16-bit interpeter:.

Available when running under
 Key Exists in Win 31 Win 95 Win NT
1 HKEY_CLASSES_ROOT 3.1 95 NT y y y *
2 HKEY_CURRENT_USER 95 NT n y y
3 HKEY_LOCAL_MACHINE 95 NT n y n
4 HKEY_USERS 95 NT n y n
5 HKEY_PERFORMANCE_DATA 95 n n n
6 HKEY_CURRENT_CONFIG 95 n y n
7 HKEY_DYN_DATA 95 n n n

* Denotes that writing to this section under Windows NT writes the value to both the 16 and 32 bit registries automatically. This is a feature of Windows
NT.

Useful Registry Sections
The following sections may be found in the Windows registry and have the uses described:

HKEY_LOCAL_MACHINE
\SOFTWARE\Microsoft\Windows\CurrentVersion\UnInstall\
Found in the Windows 95 registry, this section lists all of the items of software which have been installed on
your machine. Under each application there are two entries:
• DisplayName Holds the software's name for screen display use
• UnInstallString Holds the name of the executable to de-install the software

\SOFTWARE\Microsoft\Windows\CurrentVersion\SharedDLLs\
This section can be found in both the Windows 95 and Windows NT registry and lists all files which have been
registered as shared - files such as DLLs which are required by more than one application, for example, the
Visual Basic and Access run-time modules.
Each file name in the registry has a file count associated with it which shows the number of applications which
require the file. As a file is installed, the count is increased and when de-installed, it is decreased. Only when
the count reaches zero can the file be deleted.

See Also
For more information on the Windows Registry, please see the Windows SDK Help file section 'Registry
Database'.

RegWriteSetting

Format
RegWriteSetting(nKey, "SubKey", "Entry", "Value")

Purpose
Writes a string value to the Windows Registry.

Parameters
• Key number

1 HKEY_CLASSES_ROOT (Win 3.1 only supports this)
2 HKEY_CURRENT_USER
3 HKEY_LOCAL_MACHINE
4 HKEY_USERS
5 HKEY_PERFORMANCE_DATA (NT only)
6 HKEY_CURRENT_CONFIG
7 HKEY_DYN_DATA

• Sub key string to write the value to
• Entry within the sub key to write
• The string value to write to the registry

Return Value
None

Comments
This function works under both Windows 3.1 and Windows NT/95 and writes the value to the appropriate
registry depending on which operating system is currently running.
Note that under Windows 3.1, only the HKEY_CLASSES_ROOT key is valid (all other keys are defaulted to
HKEY_CLASSES_ROOT) whereas under Windows NT/95 all of the key values are valid.

Example
RegWriteSetting(1, "SetupBuilder\Options", "ProjectName", "TestProject.SPJ")

See Also
Windows Registry, RegGetSetting, RegDeleteSetting

RegWriteInt

Format
RegWriteInt(nKey, "SubKey", "Entry", nValue)

Purpose
Writes a long integer (32 bit) value to the Windows Registry.

Parameters
• Key number

1 HKEY_CLASSES_ROOT (Win 3.1 only supports this)
2 HKEY_CURRENT_USER
3 HKEY_LOCAL_MACHINE
4 HKEY_USERS
5 HKEY_PERFORMANCE_DATA (NT only)
6 HKEY_CURRENT_CONFIG
7 HKEY_DYN_DATA

• Sub key string to write the value to
• Entry within the sub key to write
• Numeric value to write to the registry

Return Value
None

Comments
This function works under both Windows 3.1 and Windows NT/95 and writes the value to the appropriate
registry depending on which operating system is currently running.
Note that under Windows 3.1, only the HKEY_CLASSES_ROOT key is valid (all other keys are defaulted to
HKEY_CLASSES_ROOT) whereas under Windows NT/95 all of the key values are valid.
In the 16 bit version of the interpreter, this function always writes a string value to the registry because the
Windows 3.1 registry does not support numeric entries. Therefore, under Windows 3.1, this function has the
same effect as the RegWriteSetting function.

Example
RegWriteInt(1, "SetupBuilder\Options", "Number", 123)

See Also
Windows Registry, RegGetInt, RegDeleteSetting

Release

Format
Release()

Purpose
Relinquishes control to Windows in order to achieve multi-tasking

Parameters
None

Return Value
None

Comments
The Setup program only performs multi-tasking during file copying and while dialog or message boxes are
present on the screen.
Since Windows requires applications to relinquish control in order to achieve multi-tasking, this function
provides multi-tasking ability to the Setup program

Example
This example waits for a file to be created by another process. It terminates when the file becomes present

:WAIT
CheckExists("TEST.TXT")
IF %ERROR% == TRUE GOTO :FOUND

Release()
GOTO :WAIT

:FOUND

Reload

Format
Reload()
Reload("group name")

Purpose
Tells Program Manager to reload all its group files from those specified in PROGMAN.INI
Tells Program Manager to reload a specific group file.

Parameters
• String name of the program group to reload.

Comments
An empty or invalid/non-existant group name parameter will cause this function to have no effect.
If all groups are to be reloaded, use the first format of the command with no name between the brackets.

Return Value
None

Comments
This function is useful when the PROGMAN.INI file has been changed manually via the
WritePrivateProfileString() function

Example
Reload()
Reload("Main")

Rename

Format
Rename("OldName", "NewName")

Purpose
Renames a file to a new name

Parameters
• String name of file to be renamed
• String new name of file

Return Value
The %ERROR% variable hold the error status:

• TRUE Error - file not found or renamed
• FALSE Success

Comments
The file name may not contain wild cards or path/drive specifications which means that when renaming files,
the file to be renamed must be in the current directory. The function does not handle wildcards when renaming.

Example
Rename("TEST.DAT", "DATA.DAT")

Reserved Labels and Variable Names

This page lists all of the variables and labels used by a standard installation script created by Setup Builder.
The variables are in addition to the Predefined/DOS Environment Variables.
When writing your own script from scratch, all of the labels and variables listed on this page can be freely used
as they only apply to scripts created by Setup Builder when building an installation.

Variables used by a Standard Setup Builder Installation
%BackDrop%
Name of the backdrop object being displayed.

%DeInstall%
Name of the de-install script file.

%Installed%
Holds TRUE if the installation has been done before and the software is already installed.

%InstTemp%
Temporary variable which you can use

%Len%
Temporary variable which you can use

%MakeDir%
Temporary copy of %InstallPath%. You can re-use this variable as it has no lasting effect.

%Option%
%Option1% to %Option15%
These variables are used by the optional installation script. You should not change these variables.

%PmGrp%
Holds IDYES if the user specified to create a Program Manager Group, IDNO if not.
This variable can be used to decide whether icons should be created manually depending on whether the
Program Manager Group was created.

%Required%
Total disk space required by an installation.

%Skip%
Used in installations with optional installs. Used as a flag to update the gauge or not.

%Space%
Extra disk space required (specified in Project/Attributes dialog in Setup Builder)

%Temp%
Temporary copy of %InstallPath%. You can re-use this variable as it has no lasting effect.

%Width%
Screen width on pixels

Labels used by a Standard Setup Builder Installation
:BACK1

Label to which Back button goes to so that the user can go back from the Optional Installations dialog to the
Install / Un-Install option dialog.

:BACK2
Label to which Back button in ASKPATH dialog goes so that the user can go back from the ASKPATH dialog
to the Optional Installations dialog.

:DEINSTALL
A jump occurs to here to perform the de-installation procedure.

:DIRERROR
This is the error routine which is jumped to when the installation directory could not be created.

:DODELETE
A jump occurs to this label to actually do the de-installation.

:END
The end of the script, just before the script which removes all the bitmaps copied to the Windows TEMP
directory and closes down the installation procedure.

:ERROR
A jump occurs to here if an error occurs during installation.

:EXIT
A jump occurs to here if the user selects to cancel the installation.

:INSTALLED
A jump occurs to here over other script which only executes if the software has not already been installed.

:LICENSING
Marks the start of the script which requests licensing information. Not used by standard Setup Builder
installations, but you can write script that jumps to this label if required.

:NOPMGROUP
A jump occurs to here jumping over script which creates a Program Manager group if the user selects not to
create a Program Manager group and icons.

:NOTINSTALLED
A jump occurs to here if the de-install procedure detects that the software hasn't been installed.

:OVERn
Used to jump over files not requiring to be installed - used in Optional Installations and overwrite/in use
confirmations.

:RETRY
When the installation directory cannot be created, the user gets the option to try again. Control jumps back to
this label so that the user can enter a new installation directory name and try again.

:SUCCESS
A jump occurs to here when the software has been successfully installed.

See Also: Predefined/DOS Environment Variables, Standards and Notations

Right

Format
Right("String", numchars)

Purpose
Used in conjunction with the SET command, this function extracts the number of characters specified from the
end of a string

Parameters
• String to extract from
• Numeric number of characters to extract

Return Value
The return value is a string and is assigned to the variable in the SET statement

Example
Set %Var% = Right("Test String", 3) // %Var% holds 'ing'

See Also
Left, Mid

Rmdir

Format
RmDir("directory name")

Purpose
Removes a directory from a disk

Parameters
• String name of directory to remove

Return Value
The %ERROR% variable hold the error status:

• TRUE Error - directory not found or could not
be removed possibly because it still contains files

• FALSE Success

Comments
Note that RmDir does not perform a multi-level removal directories. This is partly because it does not delete
files anyway and also for safety reasons to stop accidental deleting of large amounts of files.

Example
RmDir("C:\SETUP")

See Also
Chdir, Mkdir

Running a Script

There are two ways in which the Setup utility may be run in order to execute a script file:

Diskette
If Setup is to be run from a diskette then both the SETUP.EXE and INST.EXE programs will need to be
copied to the diskette.
The script file must be named SETUP.INF
The SETUP.EXE program copies INST.EXE and SETUP.INF into the Windows directory and then runs
the interpreter from there since the user may have requested some diskette changes within the script.
This is a typical installation diskette suite.

Fixed disk
If setup is to be run from a fixed disk then it can be set up as an icon on Windows Program Manager.
In this case, only the INST.EXE program is required and the name of the script file to be executed should
be passed as a parameter to the program.
The script file may have any name.

fs25SET command

Format
SET %varname% = "text"
SET %varname% = number
SET %varname% = %varname%
SET %varname% = number + number
SET %varname% = NOT number
SET %varname% = number logicaloperator number

Purpose
Assigns a value to a variable

Parameters
• A string enclosed in double " quotes which in turn may

include embedded variable names.
• An integer positive or negative number
• Another variable
• Arithmetic operators + - * and /
• A Predefined Constant

Return Value
None

Comments
The string may contain embedded variables.
Since numbers are held internally in their string form, they may be specified as string parameters.
If an attempt is made to perform an arithmetic operation and one or more of the parameters is not a valid
number, a run time error will occur.

Valid logical operators are:

• AND
• OR
• XOR
• NOT

Example
SET %varname% = "Some text"
SET %varname% = 1024
SET %varname% = %othervar%
SET %varname% = IDOK
SET %newvar% = %varname% * 3
SET %newvar% = 3 + 4
SET %newvar% = -2 * %varname%
SET %newvar% = "%varname%" / "2"
SET %newvar% = 8 OR 16

Notes
If a SET statement is being used to perform a mathematical operation such as adding or subtracting two
numbers, a space must follow the + or - character otherwise they will be taken as the sign of the following
number and then create a run-time error because there is no mathematical operator sign.

See Also
Standards and Notations

SetControlText

Format
SetControlText("ObjectName", nObjectId, "text")

Purpose
Changes the text of a control within a user defined object.

Parameters
• String name of the object containing the control to be changed
• Numeric Id of the control Id to be changed
• String containing text to assign to the control

Return Value
None

Comments
SetControlText can be used to change the text of a control within a user defined object once the object has
been created.
Each control within a user defined object should be assigned a unique Control Id when it is created with the
CreateControl function. If more than one control has the same Id (eg -1 which should be used for controls
which don't require an Id), the SetControlText function will change the text of all of the controls with that Id
within the object.
SetControlText can be used to change the text of a control which is currently being displayed, for example, in
the current backdrop or cue card. The respective object will be redrawn to reflect the change.

SetFileAttr

Format
SetFileAttr("filename", rdonly, hidden, system, archive)

Purpose
Sets the attributes of a file

Parameters
• String name of file to set attributes on
• Numeric 1 or 0 to make file read only
• Numeric 1 or 0 to make file hidden
• Numeric 1 or 0 to make file a system file
• Numeric 1 or 0 to flag the file for archive

Return Value
None

Comments
The file name must NOT contain wildcards

Example
SetFileAttr("C:\AUTOEXEC.BAT", TRUE, FALSE, FALSE, FALSE)

SetFileDate

Format
SetFileDate("filename", "date")

Purpose
Sets the date of a file

Parameters
• String name of file to set the date of
• The new date in the format dd/mm/yy

Return Value
The %ERROR% variable holds the error status:

• TRUE Error - file not found
• FALSE Success

Comments
The file name must NOT contain wildcards

Example
SetFileDate("C:\AUTOEXEC.BAT", "01/12/92")

SetFocus

Format
SetFocus(nId)

Purpose
Sets the control within a User Defined dialog that will receive the focus when the dialog is first displayed

Parameters
• Numeric Id of the control to have focus

Return Value
None

Comments
The SetFocus function sets the control which will receive focus when a User Defined dialog is first displayed.
The numeric Id parameter is the same as that supplied as a parameter to one of the CreateControl calls when
the dialog was created. This is why all Ids should be unique within a dialog: if they're not, SetFocus() will give
focus to the first control it finds with the given Id.

Example
Please see the example in the CreateDialog function documentation.

SetFileTime

Format
SetFileTime("filename", "time")

Purpose
Sets the time of a file

Parameters
• String name of file to set the time of
• The new time in the format hh/mm/ss

Return Value
The %ERROR% variable holds the error status:

• TRUE Error - file not found
• FALSE Success

Comments
The file name must NOT contain wildcards

Example
SetFileTime("C:\AUTOEXEC.BAT", "09:16:03")

SetGaugeText

Format
SetGaugeText("Copy Message", "Source Text", "Target Text")

Purpose
Enables the programmer to manually control the text displayed in the fields of the CopyFile dialog.

Parameters
• String text to display at the top of the 'CopyFile' dialog
• String text to display as the 'Source' text
• String text to display as the 'Target' text

Return Value
None

Notes
Using this function in conjunction with the CopyFile(n) and UpdateGauge() functions, you can effectively
make use of the progress gauge for any use you require in addition to the standard file copying.

SetLanguage

Format
SetLanguage("language")

Purpose
Specifies to the interpreter the language to display all system generated text on buttons and dialogs

Parameters
• A string specifying the language which may be:

UkEnglish
USEnglish
French
German
Italian
Spanish
Dutch

Return Value
None. An unsupported language name causes a run-time error

Comments
The default language used by the interpreter if the SetLanguage function is not called is that specified by the
[intl] iCountry= setting in the WIN.INI file. If this is not available, or it specifies an unsupported language, the
default is UkEnglish.
The interpreter only supports the languages listed above.
The language name is not case sensitive.

Example
SetLanguage("German")

This would cause all system displayed text on buttons and dialogs to appear in the German language.

ShowBackDrop

Format
ShowBackdrop("ObjectName")

Purpose
Displays a backdrop object.

Parameters
• String name of the backdrop object to display

Return Value
None

Comments
The syntax of this function supercedes that used by earlier versions of the script interpreter to the point of
making it completely incompatible with previous versions. The backdrop object now contains the definitions
of all the controls to be displayed on the backdrop.

ShowCueCard

Format
ShowCueCard("ObjectName")

Purpose
Displays the specified Cue Card object.

Parameters
• String name of Cue Card object to display.

Return Value
None

Comments
A cue card is simply a panel on the screen usually displayed on the backdrop and may contain text, bitmaps
and icons etc to create a small 'picture box' during an installation, advertising to the user what the software
being installed can do, or how they should register for example.

ShowCueCard is used to display a cue card. To display another cue card, simply call ShowCueCard again with
a different object name. To hide the cue card completely, call ShowCueCard with an empty string parameter:
ShowCueCard("")

Cur Cards will not be displayed if there is no backdrop display.

ShowGroup

Format
ShowGroup("group name", showflag)

Purpose
Displays an existing program group on Windows Program Manager

Parameters
• String name of group to be shown
• Numeric value of type of show which may be:

1 Activates and displays the group window.
If the window is minimized or maximized, Windows
restores it to its original size and position.

2 Activates the group window and displays it as an icon.
3 Activates the group window and displays it as

a maximized window.
4 Displays the group window in its most recent size and

position. The window that is currently active remains
active.

5 Activates the group window and displays it in its
current size and position.

6 Minimizes the group window.
7 Displays the group window as an icon. The window that

is currently active remains active.
8 Displays the group window in its current state. The

window that is currently active remains active.

Return Value
None

Comments
The group name is the full name which appears in the caption of the group when it is displayed by Program
Manager including spaces.
This command can be used for selecting groups.
If the specified group does not exist, this function has no effect.

Example
ShowGroup("Main", 1)
ShowGroup("Accessories", 2)
ShowGroup("Visual Basic 3.0", 1)

ShowWaitMessage

Format
ShowWaitMessage("Message Text")

Purpose
Displays a message in a window and carries on processing with the window present.

Parameters
• String message to display

Return Value
None

Comments
The message may contain embedded carriage return characters which will cause the message to be split across
multiple lines.
The message is always centred horizontally and vertically in the message window.
To remove the wait message, you can either call this function again with different text as a parameter or call
the HideWaitMessage function to remove the window altogether.

Example
ShowWaitMessage("A test message|across two lines")

See Also
HideWaitMessage

Skip

Format
Skip(nLines)

Purpose
Skips a number of lines in the script.

Parameters
• Numeric number of lines to skip forward

Return Value
None

Comments
This function can be used in place of the GOTO command if the number of lines to be skipped is known.
Because this function does not reference the label buffer, it is much faster than the GOTO command.

Standards and Notations

Commands
Commands/function/variable names are not case sensitive and with the exception of the open bracket on a
function name, the user may use spaces as required between statements.
Whereever a string appears as a parameter to a function or command a variable may also be placed.

Variables
All variable names start with and end with a % character.
A variable name may consist up up to 20 characters of the users choice.
You may create up to 50 variables at any one time.
To clear a variable from the variable space, set it to an empty "" string.
Refering to variables which don't exist returns an empty string.
If a variable doesn't exist and it is the same as a DOS environment variable, the value of the DOS environment
variable will be returned instead.

Variables may also start and end with a # character. Normally, the %..% notation is used. When a statement
such as:

Set %MyVariable% = "This the %Application% variable"
is used, the embedded variable %Application% is evaluated at the same time and the the value of
%MyVariable% holds the substituted string. If the variable %Application% is subsequently changed and
%MyVariable% is used as a parameter to a function, %MyVariable% will hold the value of %Application% as
it was when %MyVariable% was assigned.
The #..# notation supresses the substitution when the string is assigned such that the variable substitution is
performed when %MyVariable% is used, not when it is first assigned:

// Standard substitution example
Set %Application% = "Test"
Set %MyVariable% = "This is the %Application% variable"
Set %Application% = "Changed"
MessageBox("The result is: %MyVariable%", "Test", MB_OK, 0)
// This would display 'The result is: This is the Test variable'

or
// Delayed substitution example
Set %Application% = "Test"
Set %MyVariable% = "This is the #Application# variable"
Set %Application% = "Changed"
MessageBox("The result is: %MyVariable%", "Test", MB_OK, 0)
// This would display 'The result is: This is the Changed variable'

This feature is mainly used when overriding the in-built dialogs with User Defined Dialogs (UDDs) as UDDs
are defined at the start of a script before the variables to which they often refer are defined.
Delayed substitution effectly allows a variable to be set to represent another variable all the time without
having to assign it each time to make it adopt the new value.
There are also a number of in-built substitution strings which you can also use:

#OK#
#CANCEL#
#EXIT#
#QUIT#
#ABOUT#

#RETRY#
#IGNORE#
#INSTALL#
#DEINSTALL#
#CONTINUE#
#ADD#
#MODIFY#
#UPDATE#
#DELETE#
#NEW#
#HELP#
#BACK#
#NEXT#
#USERNAME#
#COMPANYNAME#

#INSTVER# File name of interpreter executable
(INST16 or INST32)

All of these strings are replaced with the appropriately translated word which they represent (according to the
language currently set by SetLanguage()). Typically, these are used on buttons in user defined dialogs, but you
can use them in any strings. Please see the sample projects and files supplied with Setup Builder as the
'Windows 95 look-alike' sample dialog objects demonstrate the use of the delayed variable substitution feature
discussed in this section.

See Also Predefined Variables

Strings
Strings always start with and end with a " character. Within a string you may place any combination of
characters you wish, however the | (vertical bar) symbol will be translated into a carriage return.
This is useful for creating blank lines in message boxes etc.
By placing text and/or nesting variables in a string, string concatenation is achieved:

"Here is a variable:|%varname% more text"

It is also possible to insert special characters in a string by preceding the appropriate decimal ASCII code with
a '^' character:

"Here is a character^13return before the ^34return^34 word"

This would display as:

Here is a character
return before the "return" word

Up to three numeric digits following the ^ character are taken as the ASCII code, so for example:

"Here is ^0656B"

would display as:

Here is A6B

If less than three numeric digits are given before a non-numeric, then all the numeric digits supplied up to the
non-numeric are taken as the ASCII code as in the first example above with ^13 and ^34
Note that an ASCII code zero will cause a string to be terminated as in the 'C' language.
To insert a ^ character in a string, simply place it in the string twice:

"Here is a ^^ character"

would display as:

Here is a ^ character

Numbers
Both positive and negative integer numeric values are supported with a 32 bit range.
See Also Predefined Constants

Labels
Labels start with a : character and end with a space or the end of the line. Statements on the same line after a
label are not executed.

Comments
Comments may be placed in scripts using the standard 'C' language // notation.

STOP command

Format
STOP

Purpose
Terminates all processing of all scripts

Parameters
None

Return Value
None, but all script processing stops.

Comments
This command does not cause a message to appear telling the user that at STOP command has been reached,
unlike other languages

See Also
EXIT

Suggestions for Use

The INSTxx.EXE program is an interpreter program which may have many uses other than just installation
scripts.

Here are some suggested uses for the Setup and Setup/Builder software products:

• Application Installation
• Application De-installation
• Windows hosted 'batch/script' programs
• Network logon scripts
• Software version upgrading (eg copying from a network)
• Software/Machine configuration management

UCase

Format
UCase("String")

Purpose
Used in conjunction with the SET command, this function converts a string to upper case

Parameters
• String to convert

Return Value
The return value is a string and is assigned to the variable in the SET statement

Example
Set %Var% = UCase("Test String") // %Var% holds 'TEST STRING'

See Also
LCase

UnCompress

Format
UnCompress("source name", "target name", delete)

Purpose
Uncompresses a file previously compressed using the Microsoft COMPRESS.EXE program, renaming it and
optionally deletes the source file afterwards

Parameters
• Name of the file to uncompress

This name may contain a path name but must not contain wildcard
specifications

• Name of file to rename to
This name may contain a path name but must not contain wildcard
specifications

• TRUE Delete after uncompress
FALSE Do not delete after uncompress (Default if not supplied)

Return Value
The %ERROR% variable holds the error number

Example
UnCompress("A:\ABC.EX_", "C:\TEST\ABC.EXE")
UnCompress("C:\ABC.EX_", "C:\ABC.EXE", TRUE)

UnRegister

Format
UnRegister("filename.ext")

Purpose
Removes a file to the shared file registry

Parameters
• String fully qualified file name of the file being removed

Return Value
The %ERROR% variable holds the number of applications sharing the file after the application currently being
deinstalled has unregistered itself as using the file.

Comments
Please see the Register function for a full description of the shared file registry

Example
UnRegister("C:\WINDOWS\SYSTEM\CTL3DV2.DLL")
MessageBox("%ERROR% applications are now sharing this file.", "Test", MB_OK, 0)

See Also
Register

UpdateGauge

Format
UpdateGauge(nCount)

Purpose
Enables the programmer to manually update the progress gauge in the CopyFile dialog.

Parameters
• Numeric value to adjust the gauge by

Return Value
None

Comments
This function is used to update the progress gauge. The parameter value may be a positive or negative integer
and may be any value from zero to the size of the gauge (the value 'n' passed to CopyFile(n)).

User Defined Dialogs

The Setup script interpreter supports the ability to create user-defined dialogs such that scripts can be written
with user-specifically tailored dialogs. Each dialog, like a backdrop and a cue card is considered as an object.
Up to 30 objects may be created and they may contain up to 50 controls each. It is possible to create dialog
objects containing the following controls:

• Static text fields
• Edit fields
• Group boxes (border lines)
• Icons
• Bitmaps
• Check boxes
• Radio Buttons
• Push Buttons
• Colour blocks
• List Boxes
• ComboBoxes
• Drop Lists

User defined dialogs are maintained using the following script language functions:

CreateDialog
CreateControl
CentreDialog
SetFocus
DestroyObject

User defined dialogs are handled in terms of 'templates' and each template has a unique identifying name. This
name may be the same as an in-built dialog, providing a way to override in-built dialogs.
A dialog template must always be created first using the CreateDialog function before any user defined dialog
functionality can be performed.
CreateDialog allocates space in an internal table reserved for holding user-dialog templates, ready for controls
to be added.
CreateControl adds controls to a template and SetFocus marks the template with the Id of the control which
will have focus when the dialog is first displayed.
When a dialog is finished with it may be deleted using the DestroyObject function.
It is possible to create a template at the begining of a script and use it several times via the DialogBox function.
In this way you do not have to keep creating and destroying dialogs.

User defined dialogs are activated using the standard DialogBox function, passing the name of a template
instead of one of the in-built standard template names.

In order to provide a convenient way to set field values and retrieve values from fields, when controls are
created they may have a variable name attached. This variable will be read to pre-populate dialog fields and
when the user presses Ok only (none of the other buttons), the variable will be populated with the value in the
field. Therefore, simply refering to variables provides an easy method to pass data to and from a dialog.

The coordination system used by dialogs is that of 'dialog units' discussed in the Windows SDK help. These
ensure that whatever screen resolution or font size your Windows system uses, dialogs will always be a
consistent size with the system font: no edit fields too high or low to show all characters.

User defined dialogs can be used to define any screen the user wishes, subject to the use of the standard

Windows controls supported.

Wait

Format
Wait("Window Caption", option)

Purpose
Performs a wait in a script until another window has become visible or it disappears

Parameters
• String name of window caption to check
• Option required which may be:

0 Wait until window appears
1 Wait until window disappears
2 Wait until window appears and then disappears

Return Value
None

Comments
This funtion should be used to synchronise events within the Windows environment. If another application is
started using the WinExec() funtion for example, script processing will continue dur to the multitasking nature
of Windows. The Wait() funtion can be used to stop a script from continuing until a window
appears/disappears.
The 'caption' is the text which appears in the title bar of the window being checked for

Example
This example starts up Windows Notepad and waits until the user closes Notepad down. It then displays a
message to show completion.

WinExec("notepad")
Wait("Notepad - (Untitled)", 2)
MessageBox("Notepad closed down", "Test", 0, MB_OK)

See Also
Release

What is Setup ?

Setup is a utility program which can be used to interpret script files written by a user to install applications in a
Windows-hosted environment. This includes Windows 3.1, Windows 95 and Windows NT.

It may also be used as a tool for automating configurations of software and as a 'Windows hosted batch file
interpreter'.

WinExec

Format
WinExec("Filename" [, nShow [, bWait]])

Purpose
Executes another program

Parameters
• String name of program file to be run
• ShowWindow value as documented in the Windows SDK
• Wait for the program to terminate

Return Value
The %ERROR% variable holds the return value of the standard Windows WinExec function, A value less than
32 indicates an error. Any other number indicates success.
Please note that you should check the error return code of this function as Windows 3.1 can have severe
memory problems (particularly in a networked environment) which can cause this function to fail. The reader
is refered to the May 1995 edition of MSJ and an article by Matt Pitriek on 'Fix1Mb'.

Comments
If not supplied, the nShow parameter defaults to 5 - SW_SHOW. It may be any of the following values:

0 SW_HIDE
1 SW_SHOWNORMAL
1 SW_NORMAL
2 SW_SHOWMINIMIZED
3 SW_SHOWMAXIMIZED
3 SW_MAXIMIZE
4 SW_SHOWNOACTIVATE
5 SW_SHOW
6 SW_MINIMIZE
7 SW_SHOWMINNOACTIVE
8 SW_SHOWNA
9 SW_RESTORE

If not supplied, the bWait parameter defaults to FALSE to maintain backwards compatibility with earlier
versions of the interpreter. If supplied as TRUE, the WinExec function will wait indefinately until the called
program terminates. This provides an easy way to obtain synchronisation in a multi-tasking environment.

Examples
WinExec("notepad.exe")
WinExec("notepad.exe", 5)
WinExec("notepad.exe", 5, TRUE)

See Also
Windows SDK documentation WinExec API function.
May 1995 edition of MSJ, article by Matt Pietrek on 'Fix1Mb'.

GetWinVer

Format
GetWinVer(%Version%)

Purpose
Gets into a numeric variable, the version number of Windows which is currently running.

Parameters
• Variable to store the result

Return Value
None

Comments
The variable will contain the following value depending on which version of Windows is currently running:
• 310 For Windows 3.1 and Windows for Work Groups
• 395 For Windows 95
• 350 For Windows NT 3.50 and 3.51

Example
GetWinVer(%Version%)
MessageBox("This is Windows version: %Version%", "Test", MB_OK, 0)

WritePrivateProfileString
WriteProfileString

Format
WriteProfileString("section" , "entry",

"setting", "file name")

Purpose
Writes a string to a Windows .INI file.

Parameters
• String [Section] of .INI file to write to
• String entry within the section to write
• String data to be written for the entry
• String name of .INI file to write to

Return Value
None

Comments
Along with the standard windows function, if no path is specified in the .INI file name, writing defaults to the
Windows directory
This function is useful for making changes to WIN.INI or SYSTEM.INI during your installation procedures.
The setup procedure which installs the Setup software for you will optionally use this function to create a File
Manager file association for you.
The WritePrivateProfileString function is only supplied for compatibility with earlier versions of Setup. You
should use the WriteProfileString function.

Example
WriteProfileString("Extensions", "inf", "inst.exe ^.inf", "win.ini")

Notes
Please note that some of the Windows .INI component files have duplicate 'entry' names. The SYSTEM.INI
[386Enh] section is a good example of this where there are multiple Device= entries.
The Setup Script language does not support reading and writing of such entries: it only supports unique entry
names. Indeed, the Windows API functions which the script language functions map onto do not support
duplicate entry names either. To handle such entries some script code could be written which enters a loop to
read every line of the .INI file, writing them to a temporary file and making adjustments at the same time. The
resulting temporary file would then be renamed or copied over the original .INI file.

See Also
GetProfileString

WriteLine

Format
WriteLine(stream, "string")

Purpose
Writes a line to the specified file stream

Parameters
• The numeric stream of the file (1-10)
• The text to write to the file

Return Value
The %ERROR% variable holds the error status:

• 0 Success
• 1 Error

Comments
The string may contain embedded variables.
This function will only write to ASCII files and automatically appends a CR/LF after any text written to a file.
To be able to write to a file, the file must have previously been opened in WRITE mode using the Open
function. The file must have been opened with the same stream number as that passed to this function.
An error will occur if you try to read from a stream which has not been opened in WRITE mode

Example
This example reads the CONFIG.SYS file and writes it out to TEMP.DAT having changed the FILES entry to
100

Open("C:\CONFIG.SYS", 1, READ)
IF %ERROR% == TRUE GOTO :OPENERROR

Open("C:\TEMP.DAT", 2, WRITE)
:NEXTLINE
ReadLine(1, %Buffer%)
IF %ERROR% == EOF GOTO :EOF

SET %Ptr% = Instr(1, %Buffer%, "FILES=")
IF %Ptr% == 0 GOTO :NOTFOUND

Set %Buffer% = "FILES=100"

:NOTFOUND
WriteLine(2, %Buffer%)
GOTO :NEXTLINE

:EOF
Close(1)
Close(2)

.

.

:OPENERROR

See Also
Close, Open, ReadLine

